Том 40. Математическая планета. Путешествие вокруг света - [10]
Бертран Рассел пошел дальше и заявил, что математика выводится из логики. Однако этот факт вовсе не означает, что логика — суть математики. Мы каждый день принимаем решения, которые можно обосновать при помощи логики, но не рассматриваем их как логические задачи. Мы принимаем решения с учетом множества факторов, и логика — лишь один из них. Мы очень часто опираемся на опыт, интуицию, аналогии, советы и бесчисленное множество других доводов, которые по истечении времени можно рационально обосновать. Но мы не всегда рассуждаем исключительно рационально. Так и математическая мысль и сама математика не сводятся к одной лишь логике.
Шульба-Сутры — единственный индийский математический текст ведического периода, то есть VIII–II веков до н. э. В нем приведены четкие методы построения алтарей квадратной или круглой формы для дома. Алтари, находившиеся в общественных местах, должны были иметь более сложную форму и содержать треугольники, ромбоиды и трапецоиды. В одном из таких алтарей элементарные многоугольники образовывали фигуру в форме птицы — возможно, это означало, что после жертвоприношения птица поднимет в небеса просьбу просившего.
Одна из задач заключалась в построении алтаря площадью в два раза больше данного. Эту простую геометрическую задачу можно решить на глаз и в численном виде. Второй способ предпочтительнее, если мы хотим заранее определить, сколько материала потребуется на изготовление алтаря. Первым способом решение находится мгновенно: достаточно построить квадрат на диагонали исходного. Полученный квадрат будет содержать ровно четыре половины исходного квадрата.
Численное решение основано на применении теоремы Пифагора или определении числа, которое при возведении в квадрат дает 2. В самом деле, какова длина стороны квадрата х, площадь которого в два раза больше площади квадрата со стороной с? Посмотрим:
Шульба-Сутры также содержат описание алгоритмического метода вычисления квадратного корня из 2 путем последовательных приближений. Согласно этому методу, нужно добавить к длине стороны ее треть, затем — четвертую часть трети и, наконец, вычесть 30-ю часть четвертой части трети стороны. Иными словами, обозначив через с длину стороны квадрата, который нужно удвоить, имеем:
Выполнив указанные операции, вы увидите, что полученный результат — прекрасное приближение квадратного корня из 2 с точностью до пяти знаков после запятой:
Позднее, в XV веке, к этому числу были добавлены еще два члена, и в результате оно стало равняться корню из 2 с точностью до семи знаков:
Откуда взялись эти цифры и число 34, в Шульба-Сутрах ничего не сказано. В них, как и во многих других математических текстах, зафиксированы лишь ответы, а не пути к решениям. Существует гипотеза, согласно которой индийский алгоритм вычисления корня из 2 основан на методе, известном еще вавилонянам. Мы уже показали, что им удалось с удивительной точностью вычислить длину диагонали квадрата, но нам ничего не известно о том, какой метод они при этом использовали и был он алгебраическим или геометрическим.
Как математики воссоздают творческий процесс решения задачи? Нужно провести некий воображаемый путь, выбрав в качестве начала точку, к которой пришел тот, кто решил задачу. Если мы узнаем, о чем думал автор решения, зафиксированного в Шульба-Сутрах, указанные дроби и числа обретут смысл.
Среди наиболее вероятных объяснений — теория индийского математика Датты, жившего в первой трети XX века. Начнем с того, что приближенное значение корня из 2 получается при помощи числовой последовательности, которая начинается с единицы (такова длина стороны квадрата):
{1, 1,33333, 1,41467, 1,4142157, 1,4142135 } — > √2.
Длина стороны квадрата и его площадь равны единице. Так как на первом шаге мы прибавляем к единице одну треть, разделим квадрат на три равные части. Получим три прямоугольника. Обозначим два первых прямоугольника через А и В и разделим третий прямоугольник на три равные части. Каждая из этих частей будет представлять собой квадрат. Обозначим верхний квадрат через С и разделим два нижних на четыре части каждый. Получим рисунок.
Имеем одиннадцать фигур (А, В, С и восемь маленьких прямоугольников). Расположим их вокруг исходного квадрата следующим образом.
Заполнив пустой угол, получим новый квадрат. Его площадь будет больше площади искомого удвоенного квадрата на величину площади этого пустого угла, так как площадь добавленных фигур равна исходному квадрату. Заметим, что если мы добавим к этой фигуре небольшой квадрат в углу, то площадь полученного квадрата будет в точности совпадать с той, что указана в Шульба-Сутрах:
Датта объясняет использование дроби 1/(3·4·34) с алгебраической точки зрения, свойственной скорее западной математике. По его мнению, пустой угол фигуры — это излишек, который распределяется между двумя ограничивающими его сторонами. Иными словами, этот пустой угол (его площадь равна 1/12>2) делится на два прямоугольника и новый пустой угол со стороной х, которые мы «отрежем» от верхней и правой боковой стороны фигуры:
В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.
Всем известно, что существуют тройки натуральных чисел, верных для Теоремы Пифагора. Но эти числа в основном находили методом подбора. И если доказать, что есть некий алгоритм нахождения этих троек чисел, то возможно утверждение о том, что 10 проблема Гильберта неразрешима ошибочно..
Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.
Возможно ли, заглянув в пустой сосуд, увидеть карту нашей Вселенной? Ответ: да! Ведь содержимое пустого (на первый взгляд) сосуда — это бурлящий мир, полный молекул, которые мчатся с головокружительными скоростями. А поведение молекул газа иллюстрирует многочисленные математические теории, принципиально важные для понимания мироустройства. Именно исследования свойств газа позволили ученым ближе рассмотреть такие сложные понятия, как случайность, энтропия, теория информации и так далее. Попробуем и мы взглянуть на Вселенную через горлышко пустого сосуда!
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.