Том 40. Математическая планета. Путешествие вокруг света - [10]

Шрифт
Интервал

Бертран Рассел пошел дальше и заявил, что математика выводится из логики. Однако этот факт вовсе не означает, что логика — суть математики. Мы каждый день принимаем решения, которые можно обосновать при помощи логики, но не рассматриваем их как логические задачи. Мы принимаем решения с учетом множества факторов, и логика — лишь один из них. Мы очень часто опираемся на опыт, интуицию, аналогии, советы и бесчисленное множество других доводов, которые по истечении времени можно рационально обосновать. Но мы не всегда рассуждаем исключительно рационально. Так и математическая мысль и сама математика не сводятся к одной лишь логике.


Метод последовательных приближений

Шульба-Сутры — единственный индийский математический текст ведического периода, то есть VIII–II веков до н. э. В нем приведены четкие методы построения алтарей квадратной или круглой формы для дома. Алтари, находившиеся в общественных местах, должны были иметь более сложную форму и содержать треугольники, ромбоиды и трапецоиды. В одном из таких алтарей элементарные многоугольники образовывали фигуру в форме птицы — возможно, это означало, что после жертвоприношения птица поднимет в небеса просьбу просившего.

Одна из задач заключалась в построении алтаря площадью в два раза больше данного. Эту простую геометрическую задачу можно решить на глаз и в численном виде. Второй способ предпочтительнее, если мы хотим заранее определить, сколько материала потребуется на изготовление алтаря. Первым способом решение находится мгновенно: достаточно построить квадрат на диагонали исходного. Полученный квадрат будет содержать ровно четыре половины исходного квадрата.



Численное решение основано на применении теоремы Пифагора или определении числа, которое при возведении в квадрат дает 2. В самом деле, какова длина стороны квадрата х, площадь которого в два раза больше площади квадрата со стороной с? Посмотрим:



Шульба-Сутры также содержат описание алгоритмического метода вычисления квадратного корня из 2 путем последовательных приближений. Согласно этому методу, нужно добавить к длине стороны ее треть, затем — четвертую часть трети и, наконец, вычесть 30-ю часть четвертой части трети стороны. Иными словами, обозначив через с длину стороны квадрата, который нужно удвоить, имеем:


Выполнив указанные операции, вы увидите, что полученный результат — прекрасное приближение квадратного корня из 2 с точностью до пяти знаков после запятой:


Позднее, в XV веке, к этому числу были добавлены еще два члена, и в результате оно стало равняться корню из 2 с точностью до семи знаков:


Откуда взялись эти цифры и число 34, в Шульба-Сутрах ничего не сказано. В них, как и во многих других математических текстах, зафиксированы лишь ответы, а не пути к решениям. Существует гипотеза, согласно которой индийский алгоритм вычисления корня из 2 основан на методе, известном еще вавилонянам. Мы уже показали, что им удалось с удивительной точностью вычислить длину диагонали квадрата, но нам ничего не известно о том, какой метод они при этом использовали и был он алгебраическим или геометрическим.

Как математики воссоздают творческий процесс решения задачи? Нужно провести некий воображаемый путь, выбрав в качестве начала точку, к которой пришел тот, кто решил задачу. Если мы узнаем, о чем думал автор решения, зафиксированного в Шульба-Сутрах, указанные дроби и числа обретут смысл.

Среди наиболее вероятных объяснений — теория индийского математика Датты, жившего в первой трети XX века. Начнем с того, что приближенное значение корня из 2 получается при помощи числовой последовательности, которая начинается с единицы (такова длина стороны квадрата):

{1, 1,33333, 1,41467, 1,4142157, 1,4142135 } — > √2.

Длина стороны квадрата и его площадь равны единице. Так как на первом шаге мы прибавляем к единице одну треть, разделим квадрат на три равные части. Получим три прямоугольника. Обозначим два первых прямоугольника через А и В и разделим третий прямоугольник на три равные части. Каждая из этих частей будет представлять собой квадрат. Обозначим верхний квадрат через С и разделим два нижних на четыре части каждый. Получим рисунок.



Имеем одиннадцать фигур (А, В, С и восемь маленьких прямоугольников). Расположим их вокруг исходного квадрата следующим образом.



Заполнив пустой угол, получим новый квадрат. Его площадь будет больше площади искомого удвоенного квадрата на величину площади этого пустого угла, так как площадь добавленных фигур равна исходному квадрату. Заметим, что если мы добавим к этой фигуре небольшой квадрат в углу, то площадь полученного квадрата будет в точности совпадать с той, что указана в Шульба-Сутрах:


Датта объясняет использование дроби 1/(3·4·34) с алгебраической точки зрения, свойственной скорее западной математике. По его мнению, пустой угол фигуры — это излишек, который распределяется между двумя ограничивающими его сторонами. Иными словами, этот пустой угол (его площадь равна 1/12>2) делится на два прямоугольника и новый пустой угол со стороной х, которые мы «отрежем» от верхней и правой боковой стороны фигуры:


Еще от автора Микель Альберти
Том 20. Творчество  в  математике. По каким правилам ведутся игры разума

В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.


Рекомендуем почитать
В поисках бесконечности

За последнее столетие одно из центральных мост в математической науке заняла созданная немецким математиком Г. Кантором теория бесконечных множеств, понятия которой отражают наиболее общие свойства математических объектов. Однако в этой теории был вскрыт ряд парадоксов, вызвавших у многих видных ученых сомнения в справедливости ее основ. В данной книге излагается в популярной форме, какими путями шла человеческая мысль в попытках понять идею бесконечности как в физике, так и в математике, рассказывается об основных понятиях теории множеств, истории развития этой науки, вкладе в нее русских ученых. Книга предназначена для широких кругов читателей, желающих узнать, как менялось представление о бесконечности, чем занимается теория множеств и каково современное состояние этой теории.


Математика на ходу

Как приобщить ребенка к математике и даже сделать так, чтобы он ее полюбил? Замечательные британские популяризаторы науки Роб Истуэй и Майк Эскью нашли веселый и легкий путь к детскому сердцу, превратив страшное пугало – математику – в серию увлекательных игр для детей от 4 до 14 лет. Пусть ваш ребенок исподволь овладевает математической премудростью, играя изо дня в день в угадайку, числовые прятки, двадцаточку и зеленую волну. Вы сможете играть за столом, в очереди к врачу, в магазине, на прогулке, используя подручный счетный материал: машины на стоянке, товары на полках супермаркета, мотоциклистов на дороге… И конечно, ничто не мешает вам переиначивать придуманные авторами математические забавы на свой лад, приспосабливая их ко вкусам и потребностям собственных детей.


Значимые фигуры

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.