Том 40. Математическая планета. Путешествие вокруг света - [15]
Возможное объяснение заключается в том, что йоруба считали раковины на пальцах одной руки. Допустим, что мы держим в уме число 10 и последовательно разгибаем пальцы рук, чтобы отсчитать 11, 12, 13 и 14. Как отсчитать на пальцах этой же руки следующие числа до 20? Сначала разогнем пятый палец, а затем будем поочередно загибать пальцы до тех пор, пока не досчитаем до следующего десятка. Следовательно, числа, которые мы добавим к первому десятку, когда будем разгибать пальцы, мы отнимем от следующего десятка, когда будем загибать пальцы.
Таким образом, когда мы разогнем пятый палец, то будем представлять, что вычли 5 из 20: 20 — 5 = 15. Загнем один палец и получим 20 — 4 = 16, загнем еще один и получим 20 — 3 = 17. Когда мы загнем все пальцы, то начнем отсчет следующего десятка, то есть досчитаем до 20.
Методам счета за пределами академической среды посвящено множество исследований. Целью одного из них было узнать, как женщины каждый день выполняют сложение и вычитание в уме (чаще всего это происходит на рынках). Чтобы вычесть 5 единиц из 62, больше половины женщин на рынке в Мозамбике (Восточная Африка) сначала вычитали 2, а затем отнимали еще 3 от результата:
62 — 5 = (62 — 2) — 3 = 57.
Примерно треть опрошенных женщин вычитали 5 из 60, после чего прибавляли к результату две единицы:
62 — 5 = (60 — 5) + 2 = 57.
Меньшинство вычитало 10 из 62, после чего прибавляло к результату разность
62 — 5 = (62–10) + (10 — 5) = 57.
При умножении большинство женщин удваивали числа до тех пор, пока не получали приближенный результат. К примеру, они умножали 6 на 13 следующим образом (этот метод похож на египетский, описанный в начале этой главы):
Авторство всех этих методов подсчета неизвестно — так же как неизвестно, обучал ли женщин кто-либо считать именно таким способом. Возможно все описанные способы счета в уме составляют часть культурной традиции, связанной с ролью женщины в торговых отношениях.
В Нигерии также были зафиксированы алгоритмы вычислений в уме, схожие с приведенными выше. Так, сумма 18 + 19 вычислялась по следующим правилам:
18 + 19 = (18 — 1) + (19 +1) = 17 + 20 = 37
18 + 19 = (20 — 2) + (20 — 1) = 20 + 20 — (2 + 1) = 40 — 3 = 37.
При делении 45 на 3 полезно знать, что 21/3 = 7:
Эти методы позволяют понять, что одни и те же действия можно выполнять множеством способов, а математическое творчество довольно распространено.
Город Ченнаи, ранее носивший название Мадрас, — столица штата Тамилнад на юго-востоке Индии. Водители автобусов в этой местности должны очень быстро вычислять в уме, чтобы определить, сколько денег должен заплатить каждый пассажир (сумма зависит от тарифов на разных участках пути), а в конце рабочего дня на основе дневного заработка они должны вычислить так называемую батта — свою заработную плату. Батта зависит от разновидности автобуса, числа поездок и дневной выручки.
Нирмала Нареш из Университета штата Иллинойс изучил методы, которые используют водители автобусов для вычисления батта и платы за проезд в зависимости от маршрута. При этом водители учитывают соотношение между индийской валютой рупией, ее сотой частью (пайсом) и различными банкнотами и монетами.
Улица Ченная в штате Тамилнад (Индия).
Далее изложены вычисления, которые совершает в уме водитель ченнайского автобуса, чтобы найти произведение 3·293 и 3,30·61:
3·293 = 3·300 — (3·7) = 900 — 21 = 879.
3,50·61 = 3·61 + (1/2)·61 = 183 + 30,50 = 213,5.
Как видите, водитель не выполняет умножение напрямую и не применяет школьные методы, а упрощает исходные числа, чтобы легче считать в уме. В первом случае он округляет 293 до 300. Умножить 300 на 3 в уме несложно, но полученный результат больше правильного на величину, в три раза большую, чем допущенная погрешность в 7 единиц. Чтобы получить правильный ответ, нужно вычесть из 900 три раза по 7. Во втором случае десятичная дробь 3,50 раскладывается на целую и дробную части, то есть на три единицы и одну половину. Далее 61 умножается на 3 — получаем 183. Остается добавить к этому числу половину от 61, то есть 30,5.
Эти вычисления в уме доказывают, что водители прекрасно умеют не только представлять числа в виде суммы, но и на практике применяют известное в академическом мире свойство дистрибутивности умножения относительно сложения. Хотя водители получили начальное математическое образование и учились считать в уме в школе, в повседневной жизни они применяют народные методы, которые отличаются от академических.
Разделение десятичной дроби на целую и дробную часть при умножении часто используется, когда нужно произвести вычисления в уме. Этот народный метод не изучается в школах, но встречается в разных частях света.
* * *
ВЫЧИСЛЕНИЕ КВАДРАТОВ В УМЕ
Так как (n ± 1)>2 — n>2 ± 2n + 1, квадрат целого числа можно вычислить в уме, зная квадрат предыдущего или следующего числа:
31>2 = 30>2 + 2·30 +1 = 900 + 60 + 1 — 961.
19>2 = 20>2 - 2·20 + 1 = 400 — 40 + 1 = 439.
Так как n>2 = а>2 + n>2 — а>2 = а>2 + (n + а)·(n — а), квадрат целого числа также можно определить через произведение его суммы и разности с другими числами, которое несложно вычислить:
В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.
За последнее столетие одно из центральных мост в математической науке заняла созданная немецким математиком Г. Кантором теория бесконечных множеств, понятия которой отражают наиболее общие свойства математических объектов. Однако в этой теории был вскрыт ряд парадоксов, вызвавших у многих видных ученых сомнения в справедливости ее основ. В данной книге излагается в популярной форме, какими путями шла человеческая мысль в попытках понять идею бесконечности как в физике, так и в математике, рассказывается об основных понятиях теории множеств, истории развития этой науки, вкладе в нее русских ученых. Книга предназначена для широких кругов читателей, желающих узнать, как менялось представление о бесконечности, чем занимается теория множеств и каково современное состояние этой теории.
Как приобщить ребенка к математике и даже сделать так, чтобы он ее полюбил? Замечательные британские популяризаторы науки Роб Истуэй и Майк Эскью нашли веселый и легкий путь к детскому сердцу, превратив страшное пугало – математику – в серию увлекательных игр для детей от 4 до 14 лет. Пусть ваш ребенок исподволь овладевает математической премудростью, играя изо дня в день в угадайку, числовые прятки, двадцаточку и зеленую волну. Вы сможете играть за столом, в очереди к врачу, в магазине, на прогулке, используя подручный счетный материал: машины на стоянке, товары на полках супермаркета, мотоциклистов на дороге… И конечно, ничто не мешает вам переиначивать придуманные авторами математические забавы на свой лад, приспосабливая их ко вкусам и потребностям собственных детей.
Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.