Том 38. Измерение мира. Календари, меры длины и математика - [8]
Измерение небес стало в некотором роде необходимостью, и наиболее полезной наукой для этого оказалась математика, в частности геометрия и тригонометрия. Древние греки создали сложные математические теории, объяснявшие видимое движение звезд и, в особенности, планет.
Если понимать под наукой систематическое изучение, описание и объяснение явлений природы при помощи математики и логики, то истоки западной науки следует искать в древнегреческой традиции. Современная физика началась с попыток решить астрономические задачи о движении небесных тел и дать им рациональное объяснение при помощи математических моделей.
В целом, представления древних людей о Вселенной носили ярко выраженный мифологический характер. Первыми, кто предложил рациональную космологию, стали философы Древней Греции. Начиная с VI века до н. э. великие древнегреческие мыслители силой своего воображения пытались найти рациональное объяснение окружающему миру, не обращаясь к трактовкам сверхъестественного характера.
Они считали, что явления природы подчиняются определенным причинно-следственным связям, а все изменения в ней можно объяснить действием определенных законов. По мнению древних греков, познание этих законов помогло бы объяснить, почему происходят те или иные явления.
* * *
АНАКСИМАНДР И РАССУЖДЕНИЯ ПО АНАЛОГИИ
Древнегреческий философ Анаксимандр (ок. 610 г. до н. э. — ок. 545 г. до н. э.) использовал рассуждения по аналогии. Так, он утверждал, что «звезды есть части сжатого воздуха в форме колес, полные огня, постоянно испускающие пламя из небольших отверстий». Сегодня подобное объяснение вызывает улыбку, но для того времени оно стало важным шагом вперед — Анаксимандр исключил из рассмотрения сверхъестественные силы и попытался определить естественные причины явлений природы.
Фрагмент «Афинской школы» (1510–1511) Рафаэля Санти, на котором изображен Анаксимандр.
* * *
Чтобы понять древнегреческий рационализм, в рамках которого были созданы сложные математические модели для объяснения, количественного описания и предсказания небесных явлений, попытаемся ненадолго забыть все свои знания и мысленно перенесемся в начало IV века до н. э. Только так мы сможем понять всю гениальность древних греков. Примерно за 400 лет до нашей эры древние греки уже имели достаточно данных о видимом движении небесных тел и начали предлагать математические теории для его объяснения.
Систематически наблюдая за звездным небом, они отметили два важных явления. Первое из них — движение Солнца и звезд по небу, второе — движение планет. Посмотрим, что именно об этих явлениях было известно астрономам древности (Древнего Египта, Древней Греции и Месопотамии).
Суточное движение Солнца и движение звезд
Систематические наблюдения за суточным движением Солнца из одной и той же точки при помощи гномона (вертикального шеста, закрепленного на горизонтальной поверхности) показывают, что длина и направление тени гномона равномерно, медленно и непрерывно меняются в течение дня (от восхода до заката Солнца) и тем самым определяют положение Солнца.
Тень гномона в течение дня описывает симметричную фигуру в форме веера. Эта фигура каждый день меняется, но в тот момент, когда тень гномона имеет наименьшую длину, она всегда указывает в одном и том же направлении.
Вверху — монументальные солнечные часы в начальной школе Chinook Trail Elementary School в Колорадо-Спрингс (США). Внизу — проекции конца тени гномона.
Так мы можем определить, где находятся север, юг, запад и восток (когда тень имеет наименьшую длину, она всегда указывает на север), когда наступает местный полдень (в момент, когда тень гномона имеет наименьшую длину) и сколько длятся солнечные сутки (временной интервал, разделяющий два последовательных полудня, равный 24 часам).
С другой стороны, положение Солнца во время восхода над горизонтом каждый день изменяется: оно постепенно смещается от точки востока (весеннего равноденствия) до точки, расположенной ближе к северу (летнего солнцестояния), откуда вновь движется на восток (до точки осеннего равноденствия) и продолжает двигаться на юг до точки, где направление движения вновь меняется (точки зимнего солнцестояния), затем возвращается на восток, и весь цикл повторяется сначала.
Положение Солнца в момент заката меняется аналогичным образом, но на этот раз точка захода Солнца смещается вокруг точки запада. Так стало возможным определить год как временной интервал между двумя весенними равноденствиями.
Продолжительность светового дня также постоянно меняется. День зимнего солнцестояния — это самый короткий световой день в году, а тень гномона в полдень этого дня — самая длинная в году. День летнего солнцестояния — самый длинный световой день в году, а тень гномона в полдень этого дня — самая короткая в году.
Таким образом, вместе со сменой времен года изменяется положение Солнца в момент восхода (и заката) на линии горизонта. Каждый день высота Солнца над горизонтом меняется в зависимости от времени года.
Видимое движение Солнца.
Систематические наблюдения за ночным небом показывают, что положение звезд относительно друг друга неизменно. В результате стало возможным определить созвездия (произвольно выбранные группы соседних звезд) и составить карту звездного неба.
Первый перевод с французского книги «Recoltes et Semailles» выдающегося математика современности Александра Гротендика. Автор пытается проанализировать природу математического открытия, отношения учителя и учеников, роль математики в жизни и обществе. Текст книги является философски глубоким и нетривиальным и носит характер воспоминаний и размышлений. Книга будет интересна широкому кругу читателей — математикам, физикам, философам и всем интересующимся историческими, методическими и нравственными вопросами, связанными с процессом математического открытия и возникновения новых теорий.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.