Том 38. Измерение мира. Календари, меры длины и математика - [10]
Движение Солнца и Луны вдоль зодиака.
Меркурий, Венера, Марс, Юпитер и Сатурн — пять планет, которые видны на звездном небе как яркие точки. Их средние сидерические периоды обращения составляют: для Меркурия — 1 год, для Венеры — 1 год, для Марса — 687 дней, для Юпитера — 12 лет, а для Сатурна — 29 с половиной лет. Фактические периоды обращения для всех планет могут отличаться от приведенных средних значений.
Движение планет с запада на восток называется прямым, или собственным. Отмечено, что скорость прямого движения этих пяти планет постоянно меняется. Кроме того (это стало неожиданным открытием), прямое движение планет на восток периодически прерывается, и в течение определенных промежутков времени планеты движутся в обратном направлении, на запад. В это время их траектории образуют петли, после чего планеты вновь продолжают прямое движение. Во время обратного, или попятного, движения яркость планет возрастает.
Видимая траектория попятного движения планеты.
Меркурий начинает попятное движение каждые 116 дней, Венера — каждые 584 дня, Марс — каждые 780 дней, Юпитер — каждые 399 дней, Сатурн — каждые 378 дней. Это средняя продолжительность синодического периода обращения планет, то есть средний промежуток времени между двумя моментами начала попятного движения.
Меркурий и Венера никогда не отдаляются от Солнца на значительное угловое расстояние, в отличие от Марса, Юпитера и Сатурна.
Итак, планеты, помимо суточного движения с запада на восток в том же направлении, что и звезды, каждую ночь смещаются чуть дальше на восток относительно зодиакальных созвездий (это движение называется прямым, или собственным). Кроме того, прямое движение всех планет, за исключением Солнца и Луны, периодически сменяется попятным. Увязать движение планет с движением звезд было настолько сложно, что всю историю развития представлений о мире можно рассматривать как последовательные попытки преодолеть наблюдавшиеся расхождения.
Из гипотез древнегреческих философов постепенно складывалась общая концепция, позволявшая объяснить большинство результатов наблюдений. Эту концепцию Вселенной, состоящей из двух сфер, начиная с IV века до н. э. разделяло большинство греческих астрономов и философов. В указанной модели Вселенной Земля считается неподвижной сферой, расположенной в центре другой сферы намного большего размера (небесной сферы). Небесная сфера вращается с востока на запад вокруг неподвижной оси, проходящей через Северный полюс мира, и вместе с ней вращаются закрепленные на ней звезды. За пределами небесной сферы нет ничего — ни пространства, ни материи.
На основе этой концепции на протяжении почти двух тысячелетий, с IV века до н. э. до времен Николая Коперника (1473–1543), последовательно создавались различные противоречившие друг другу астрономические и космологические системы. Но истинность самой концепции практически не подвергалась сомнению.
В модели Вселенной из двух сфер не объясняется движение всех небесных тел, в частности планет, но она позволяет забыть бесчисленное множество частных результатов и рассмотреть лишь несколько основных предпосылок. Также эта модель помогает предсказывать положение небесных тел в будущем. Основные ее предпосылки таковы: небесная сфера, вращаясь с востока на запад, совершает полный оборот за 23 часа 56 минут, а Солнце в течение года движется на запад вдоль большого круга (эклиптики), расположенного под углом примерно в 23,5° (в действительности — 23°27′) относительно небесного экватора. В течение дня Солнце занимает фиксированное положение относительно эклиптики и описывает круг, параллельный небесному экватору.
Вселенная, состоящая из двух сфер.
Геометрическую модель Вселенной из двух сфер, благодаря ее простоте и удобству, астрономы-наблюдатели используют до сих пор при определении положения небесных тел. Координаты небесных тел определяются посредством угловых измерений, поэтому можно считать, что небесные тела находятся на поверхности сферы.
Греки предложили убедительные объяснения, доказывающие истинность этой модели Вселенной. В древнегреческой культуре особый вес имели эстетические аргументы, поэтому они также использовались для обоснования модели. Древнегреческие геометры считали сферу совершеннейшей из фигур, так как она при вращении вокруг оси всегда занимает одну и ту же область пространства. Кроме того, концепция небесной сферы имела смысл еще и потому, что звезды при движении по небу описывают окружности. Земля должна была иметь форму сферы не только по эстетическим причинам, но и потому, что при наблюдении с возвышения было видно, что корпус корабля, уходящего в море, пропадает из вида раньше, чем мачты, а когда корабль возвращается в порт, мачты появляются на горизонте первыми. И в довершение, тень, отбрасываемая Землей на Луну во время лунных затмений, также имела круглую форму.
Первый перевод с французского книги «Recoltes et Semailles» выдающегося математика современности Александра Гротендика. Автор пытается проанализировать природу математического открытия, отношения учителя и учеников, роль математики в жизни и обществе. Текст книги является философски глубоким и нетривиальным и носит характер воспоминаний и размышлений. Книга будет интересна широкому кругу читателей — математикам, физикам, философам и всем интересующимся историческими, методическими и нравственными вопросами, связанными с процессом математического открытия и возникновения новых теорий.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.