Том 38. Измерение мира. Календари, меры длины и математика - [5]

Шрифт
Интервал

* * *

ВЕЩЕСТВЕННЫЕ ЧИСЛА

Вещественные числа (обозначаются ) — это множество чисел, включающее как рациональные числа (положительные, отрицательные дроби и ноль; обозначаются ), так и иррациональные (алгебраические и трансцендентные), которые имеют бесконечно много непериодических знаков после запятой и которые нельзя представить в виде дроби, как, например, √2, π и так далее.



Примеры вещественных чисел ().


Начиная от натуральных чисел () — 1, 2, 3, … — которые мы используем при счете, — и заканчивая вещественными числами (), которые нужны для измерений в математических моделях, последовательное расширение множеств чисел можно объяснить необходимостью в числах, которые будут выражать результаты определенных операций:

Целые числа () позволяют выразить результат 3 – 4 = -1, рациональные () — (3/4) = 0,75, вещественные () — √2, комплексные () — √-4.

* * *

Точные измерения возможны только в математических моделях. Что и как измеряют математики? В этой науке измерения всегда были тесно связаны с геометрией — разделом, который изучает свойства фигур и тел на плоскости и в пространстве. Интересно отметить, что истоки геометрии восходят к решению конкретных задач, связанных с измерениями.

В элементарной геометрии приводится общее описание объектов и фигур, носящее качественный характер. Если мы хотим получить более конкретное и точное описание, требуется применить количественный подход — и здесь необходимы измерения, а для выражения результатов измерений нужны цифры. Отрезки имеют длину, участки плоскости — площадь, тела в пространстве — объем.

В математических моделях результаты измерений непрерывны, и для того чтобы выразить их, множества рациональных чисел недостаточно — его нужно расширить и включить в него все числа, которые покрывают числовую прямую, то есть вещественные числа. В повседневной жизни мы часто измеряем длину. В математической модели при измерении длины мы откладываем рассматриваемый отрезок вдоль прямой линии и устанавливаем соответствие между точками прямой и обозначающими их вещественными числами.

При этом вещественные числа требуются для измерений даже в, казалось бы, простых случаях. Пифагорейцы, пытаясь найти ответ на вопрос, чему равна длина диагонали квадрата с длиной стороны, равной единице, обнаружили, что существуют несоизмеримые величины. По теореме Пифагора, искомая длина диагонали равна √2, однако результат этой операции нельзя выразить рациональным числом () — для этого потребуются иррациональные числа, и мы вынуждены будем пересечь границу множества .



Длина диагонали квадрата со стороной длиной 1 равна √2, так как по теореме Пифагора √(1>2 + 1>2) = √2.


Древние греки, использовавшие при расчетах только рациональные числа, столкнулись со следующей проблемой: как измерить длину диагонали квадрата, если не существует числа, выражающего результат измерения? Решение проблемы приводит к идее о соизмеримых и несоизмеримых величинах: первые можно выразить как величину, кратную или дробную исходной единице измерения, вторые, напротив, нельзя выразить с помощью дробей или пропорций, как в нашем примере с диагональю квадрата.

В книге V «Начал» Евклид (ок. 325 г. до н. э. — ок. 265 г. до н. э.) с помощью своей теории пропорций в приложении к соизмеримым и несоизмеримым величинам решает эту задачу и устанавливает правила работы со всеми видами величин, как соизмеримыми, так и несоизмеримыми.


Величины и единицы

Слово «измерение» происходит от латинского metiri и, согласно Толковому словарю русского языка, означает «определение величины чего-либо какой-либо мерой». Это слово имеет и другие значения, в частности «протяженность измеряемой величины в каком-либо направлении». Единица измерения называется мерой. Например, пинту можно назвать мерой объема, причем ее величина в разных странах отличается; кроме того, существуют разные пинты для жидких и сыпучих объектов.

Измерение предполагает абстрагирование, при котором из всех характеристик объекта выделяется одна, которую мы хотим оценить количественно, иными словами, поставить ей в соответствие некоторое число. Если мы хотим поставить книгу на полку, интерес будут представлять ее длина или ширина, но если мы хотим придавить этой книгой листья растений для гербария, то прежде всего обратим внимание на ее вес или толщину.

В процессе измерений становится понятен смысл термина «величина». Хотя первое его значение, приведенное в толковом словаре, это «размер, объем, протяжение вещи», нас интересует другое определение — «все, что можно измерить и исчислить (в математике, физике)». Именно эта формулировка ближе всего к теме нашего обсуждения. Еще более понятно определение величины, данное Международным бюро мер и весов, согласно которому величина — это «свойство явления, тела или вещества, которое может быть выражено количественно в виде числа с указанием отличительного признака как основы для сравнения».

Процесс измерения представляет собой сравнение неизвестной величины, которую мы хотим определить, и известной нам величины, которую мы выбрали в качестве единицы измерения. В процессе измерения мы определяем соотношение размера объекта и конкретной единицы измерения.


Рекомендуем почитать
Урожаи и посевы

Первый перевод с французского книги «Recoltes et Semailles» выдающегося математика современности Александра Гротендика. Автор пытается проанализировать природу математического открытия, отношения учителя и учеников, роль математики в жизни и обществе. Текст книги является философски глубоким и нетривиальным и носит характер воспоминаний и размышлений. Книга будет интересна широкому кругу читателей — математикам, физикам, философам и всем интересующимся историческими, методическими и нравственными вопросами, связанными с процессом математического открытия и возникновения новых теорий.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Жар холодных числ и пафос бесстрастной логики

Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.