Том 33. Разум, машины и математика. Искусственный интеллект и его задачи - [25]

Шрифт
Интервал

* * *

НЕЧЕТКАЯ ЛОГИКА

Нечеткая логика — раздел математической логики, приближающий логические действия и методы к естественным, человеческим рассуждениям. Как правило, в реальной ситуации ничто не делится на белое и черное, но в классической логике, в частности в булевой, переменные могут быть только истинными или ложными, что вынуждает рассматривать лишь крайности.

К примеру, на вопрос, хорошо или плохо играет вратарь футбольной команды из первого дивизиона чемпионата Казахстана, дать однозначный ответ нельзя: в сравнении с элитой мирового футбола он наверняка не слишком хорош, но по сравнению с вратарем моей районной команды он будет первоклассным игроком.

Поэтому переменные нечеткой логики принимают значения не «истина» или «ложь», а вещественные значения, заключенные на интервале от 0 до 1, где значению 1 соответствует «истина», 0 — «ложь». Если мы обозначим через 0 неспособность отразить любой удар, а через 1 — уровень лучшего вратаря мира, то вратарь казахской команды получит вполне достойную оценку в 0,73.

* * *

Для решения задач такого типа обычно используются классические алгоритмы поиска, применяемые в искусственном интеллекте, в частности поиск с возвратом (back-tracking) или метод ветвей и границ (branch-and-bound). Оба этих алгоритма действуют схожим образом: по сути, они разворачивают комбинаторное дерево и обходят его в поисках оптимального варианта. Развертывание комбинаторного дерева происходит достаточно просто. На первом этапе создается дерево, содержащее все возможные планы (вспомните понятия, которые мы объяснили в первой главе, рассказывая об интеллектуальном алгоритме, способном определять оптимальные ходы в шахматной партии). Далее с помощью интеллектуальных алгоритмов последовательно отсекаются те ветви, которым соответствуют нереальные планы либо планы, нарушающие ограничения или ведущие к неоптимальному решению.

Важное отличие метода поиска с возвратом от метода ветвей и границ заключается в том, что первый метод состоит в обходе дерева в глубину, второй — в обходе в ширину. Это различие крайне важно: в зависимости от представления задачи отсечение той или иной ветви может иметь разную эффективность.

Последовательное отсечение ветвей дерева по мере обхода абсолютно необходимо — в противном случае, как и почти во всех комбинаторных задачах, число планов, а значит, и число ветвей, будет так велико, что его нельзя будет обойти за разумное время. Чтобы ускорить отсечение ветвей, в методах, основанных на обходе дерева, обычно используются так называемые эвристики (или формальное представление интуитивных понятий), которые может применить специалист предметной области, чтобы определить: та или иная ветвь не приведет к нужному результату, и ее необходимо отсечь как можно скорее. Разумеется, если мы отсечем ветвь, которая соответствует неосуществимому плану, на раннем этапе алгоритма, то можем сэкономить несколько часов вычислений — с переходом на более высокие уровни число вариантов, которые необходимо проанализировать, возрастает экспоненциально.



Простой пример дерева планирования для игры «крестики-нолики».

* * *

ТЕОРЕМА «БЕСПЛАТНОГО ОБЕДА НЕ БЫВАЕТ»

Теорема под названием «бесплатного обеда не бывает» (no-free lunch) гласит: не существует алгоритма, позволяющего получить оптимальные решения всех возможных задач. Теорема получила свое любопытное название на основе метафоры о стоимости блюд в различных ресторанах. Допустим, что существует определенное число ресторанов (каждый из них обозначает определенный алгоритм прогнозирования), где в меню различным блюдам (каждое блюдо обозначает определенную задачу прогнозирования) сопоставлена цена (или качество решения этой задачи, которое позволяет получить рассматриваемый алгоритм). Человек, который любит поесть и при этом не прочь сэкономить, может определить, какой ресторан предлагает его любимое блюдо по самой выгодной цене. Вегетарианец, сопровождающий этого обжору, наверняка обнаружит, что его любимое вегетарианское блюдо в этом ресторане стоит намного дороже. Если обжора захочет полакомиться бифштексом, он выберет ресторан, где бифштекс подают по самой низкой цене. Но у его друга-вегетарианца при этом не останется другого выбора, кроме как заказать единственное вегетарианское блюдо в этом ресторане, пусть даже по заоблачной цене. Это очень точная метафора ситуации, когда необходимость использования определенного алгоритма для решения конкретной задачи приводит к гарантированно неоптимальным результатам. Исследователи прилагают огромные усилия для создания супералгоритма или суперметода, позволяющего составить идеальный план, но в конечном итоге неизменно сталкиваются с определенным множеством данных или контекстом, в котором оптимальные результаты показывает другой алгоритм.

Теорема имеет еще одно важное следствие: если мы тратим много сил на корректировку алгоритма, чтобы добиться идеальных результатов для определенных исходных данных, эти корректировки гарантированно приведут к ухудшению работы алгоритма для другого множества данных. Вывод: любой алгоритм будет либо работать идеально для небольшого числа случаев и плохо — во всех остальных, либо будет демонстрировать посредственные результаты во всех случаях. соответствует неосуществимому плану, на раннем этапе алгоритма, то можем сэкономить несколько часов вычислений — с переходом на более высокие уровни число вариантов, которые необходимо проанализировать, возрастает экспоненциально.


Рекомендуем почитать
Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.