Том 33. Разум, машины и математика. Искусственный интеллект и его задачи - [24]

Шрифт
Интервал

Многие инженеры и конкуренты Google не сразу поняли, что статья была опубликована 1 апреля — в День смеха, который отмечается в многих странах, в том числе в США.



* * *



Упрощенный пример сети агентов, отвечающей за координацию перевозки органов.


Подобная многоагентная интеллектуальная архитектура обладает множеством преимуществ. В частности, эта система является отказоустойчивой — если один или сразу несколько агентов откажут, система будет по-прежнему способна решать задачи за счет саморегулирования и задействования других агентов. Еще одно важное преимущество подобной архитектуры заключается в использовании относительно простых, но узкоспециализированных агентов, на основе которых можно выстроить интеллектуальную систему, способную за несколько секунд решать сложные междисциплинарные задачи.

* * *

АГЕНТНО-ОРИЕНТИРОВАННОЕ ПРОГРАММИРОВАНИЕ

Компьютерное программирование — быстро развивающаяся дисциплина. На сегодняшний день существует пять больших семейств языков программирования, наиболее популярным из которых является семейство объектно-ориентированных языков. В объектно-ориентированном программировании все сущности представлены с помощью особых единиц информации, называемых объектами. Объекты имеют ряд атрибутов, где хранят информацию о самих себе, и способны выполнять с этой информацией некоторые операции. Объектно-ориентированное программирование требует вмешательства координаторов, которые обладают интеллектом и постоянно направляют запросы тем или иным объектам при решении задач. Неизменно предполагается, что объект — это элемент, не обладающий интеллектом, который ожидает указаний. Но не так давно мощное развитие получило новое направление программирования — агентно-ориентированное. В нем «неразумные» объекты превращаются в намного более интеллектуальные и автономные агенты, и одновременно снижается роль координатора.


Планирование — основа всего

Планирование использования ресурсов для успешного решения тех или иных задач может оказаться крайне сложным даже для опытного человека. Такое планирование используется во всех областях, начиная от не слишком важных задач, например планирования учебного расписания, распределения аудиторий, лабораторий и аудиовизуальных материалов, и заканчивая крайне важным планированием ресурсов при тушении лесных пожаров или борьбе с другими стихийными бедствиями.

Автоматические рассуждения крайне просты для человека, но невероятно сложны для машин. По сути, способность рассуждать в немалой степени является отличительным признаком людей, и ключевые особенности рассуждений до сих пор не слишком понятны нейробиологам. Для имитации рассуждений человека инженеры разработали ряд очень интересных приемов, которые применяются, к примеру, при тушении лесных пожаров.

Сегодня многие пожарные службы используют системы планирования с искусственным интеллектом. Как правило, при обнаружении лесного пожара средних размеров специалисту экстренной службы требуется до полутора часов на разработку плана тушения. Этот план подробно описывает все действия, которые следует выполнять всеми доступными средствами в зависимости от характеристик местности, погодных условий и так далее. Однако специалисты часто сталкиваются со следующей проблемой: условия в районе пожара непрерывно меняются, и этот процесс идет так быстро, что человек попросту не успевает изменить план действий. В результате многие службы пытаются внедрить автоматизированные системы, способные составить план тушения пожара за несколько секунд. Система фиксирует такие параметры, как рельеф местности, погодные условия, проезды к зоне пожара, доступные авиационные и наземные средства, а также возможность координировать действия с другими подразделениями и центрами управления, на основе этих параметров она составляет план и отправляет его на проверку человеку-эксперту.



Тушение лесного пожара требует координирования многочисленных человеческих и материальных ресурсов.


Может случиться так, что в данный момент одна единица техники не задействована, и система предлагает два варианта: перевести ее в зону, где бушует пожар, либо отправить ее на тушение очагов пожара в другую, менее опасную область, расположенную ближе. Как система определит, какой из вариантов лучше? Логично, что конечная цель — потушить пожар, следовательно, кажется более естественным направить технику туда, где пожар сильнее. С другой стороны, на переброску тех ники может уйти несколько часов, а всего в нескольких минутах езды очаги пожара не представляют большой опасности, и их можно потушить относительно легко.

Как объективно оценить преимущества от тушения пожара в определенной области с учетом расстояния до нее и затраченного времени? Именно такой оценки требует классическая, неинтеллектуальная система планирования. Но при тушении пожара используется не одна, а несколько десятков единиц наземной и воздушной техники.

Также можно учесть новые переменные, например скорость ветра и прогноз погоды, возможные дожди, расположение жилья, природоохранных зон и так далее. При таком обилии переменных становится понятной огромная потребность в интеллектуальной системе, способной принимать решения с учетом всех перечисленных факторов и на основе нечетких параметров.


Рекомендуем почитать
Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.