Том 32. Бабочка и ураган. Теория хаоса и глобальное потепление - [34]
* * *
ГЛОБАЛЬНОЕ ЗАТЕМНЕНИЕ И 11 СЕНТЯБРЯ
В течение трех дней, последовавших за террористическими атаками 11 сентября, воздушное сообщение было практически полностью прекращено. Двое американских ученых, Дэвид Трэеис и Джерри Стэнхилл, воспользовались этой возможностью и измерили колебания температуры в различных частях США. Результаты оказались невероятными: и Трэвис, и Стэнхилл отметили измерение дневных температур на 1 °С. Иными словами, после трех дней без воздушного сообщения температура снизилась почти на один градус.
* * *
В представленных выше графиках и математических моделях присутствует некоторая неопределенность, которую сами ученые пытаются измерить. При оценке неопределенности в моделях, воспроизводящих земной климат в прошлом, важную роль играет статистика. При оценке неопределенности в моделях, служащих для прогнозирования климата, в игру вступает теория хаоса.
Мы рассказали о средней мировой температуре и о том, как она меняется. Но что такое «мировая температура»? Если погоду и температуру в конкретной местности можно определить довольно точно, то мировой климат и мировая температура являются результатами расчетов и оценок. Не существует никакого аналога гигантского термометра, который можно приложить к Земле, чтобы определить ее точную температуру. Мировая температура определяется, если можно так выразиться, на «статистической кухне» и представляет собой среднюю величину, которую можно рассчитать различными способами на основе данных, собираемых на метеорологических станциях, а также с помощью метеозондов и спутников.
Математик Кристофер Эссекс и экономист Росс Маккитрик приводят такой пример. Допустим, что преподаватель физики объясняет ученикам, как определить среднюю температуру в классе. Зимой ученики измерили температуру в четырех местах (у двери, у окна, на учительском столе и на задней парте). Результаты оказались следующими: 17 °С, 19,9 °С, 20,3 °С и 22,6 °С соответственно. Когда наступила весна, учитель открыл окно, чтобы проветрить класс. Все четыре результата измерений оказались равны 20 °С. Тогда преподаватель спросил учеников: в классе холоднее или теплее, чем зимой? Половина учеников вычислила среднюю зимнюю температуру как среднее арифметическое, то есть сложив четыре значения и разделив полученную сумму на четыре. Другая половина решила определить среднюю температуру как среднее квадратическое, то есть сложив квадраты температур, разделив сумму на четыре и вычислив квадратный корень из полученного значения.
К какому выводу пришла каждая группа учеников?
Те, кто использовал первый, линейный метод, определили, что зимой средняя температура в классе равнялась 19,95 °С. Иными словами, весной в классе потеплело на 0,05 °С, до 20 °С. Те, кто использовал второй, квадратичный метод, определили, что зимой средняя температура в классе составила 20,05 °С. Следовательно, весной в классе похолодало на 0,05 °С. Кто же прав? Правы и те и другие, так как оба метода были верными и отличались только тем, с какой точки зрения в них рассматривалось термодинамическое равновесие.
Если мы будем рассматривать не класс, а всю планету, возникает еще одна проблема, связанная с объемом и качеством исходных данных: мы располагаем обширной сетью метеостанций, распределенных в пространстве и времени (метеозонды стали повсеместно использоваться с начала 1950-х, спутники — только с начала 1980-х). Во всем мире насчитывается лишь 1000 станций, на которых велись наблюдения на протяжении всего XX века. Все они расположены на суше и в Северном полушарии (в городах Европы и Америки), поэтому изменения температуры в Южном полушарии и в океанах оказались обделены вниманием. Учитывая, что изменение средней мировой температуры в прошлом веке определялось по результатам наблюдений на недостаточном числе неравномерно распределенных метеостанций, любые экстраполяции неизбежно повлекут ошибки.
Сеть метеостанций, на которых велись наблюдения с 1880 по 2009 год. Обратите внимание, что на большей части поверхности планеты метеостанции отсутствуют.
* * *
МЕТЕОСТАНЦИЯ НА ВЫСОТЕ 1888 МЕТРОВ
Если мы обратим внимание на Пиренейский полуостров, то увидим, что для определения средней температуры на нем Межправительственная группа экспертов по изменению климата ООН и Институт космических исследований имени Годдарда при NASA используют едва ли два десятка метеостанций, всего четыре из которых располагаются достаточно далеко от больших городов. Единственная из этих четырех метеостанций, которая находится в горах и содержит достаточно обширный реестр исторических данных, — это метеостанция в муниципалитете Навасеррада, провинция Мадрид. Если мы изучим температурную кривую так, как это делают климатологи, то есть применим линейную регрессию, то сразу же увидим: общая тенденция (линейная) температуры в Навасерраде на протяжении XX века оставалась неизменной. Но если мы применим полиномиальную регрессию, то есть попытаемся найти не прямую, а плавную кривую, описывающую исходные значения, то увидим, что в разные годы температура повышалась и понижалась.

Хотя в природе всегда существовали объекты с неравномерной и даже хаотичной структурой, ученые долгое время не могли описать их строение математическим языком. Понятие фракталов появилось несколько десятков лет назад. Именно тогда стало ясно, что облака, деревья, молнии, сталактиты и даже павлиний хвост можно структурировать с помощью фрактальной геометрии. Более того, мы сами в состоянии создавать фракталы! В результате последовательного возведения числа в квадрат появляется удивительное по красоте и сложности изображение, которое содержит в себе новый мир…

Таблицу умножения перестроена, сделана новая картинка. Объём материала для запоминания сокращён примерно в 5 раз. Можно использовать самую сильную – зрительную память (в прежних картинках таблицы это невозможно). Ученики запоминали таблицу за один – полтора месяца. В ней всего 36 "домиков". Умножение и деление учаться одновременно. Книга обращена к детям, объяснение простое и понятное. Метод позволяет намного облегчить деление с остатком и сокращение дробей. Метод признан Министерством Просвещения России как полезная инновация (Муниципальное образование, инновации и эксперимент 2013/1)

Галилео Галилею принадлежат слова: «Книга природы написана на языке математики». Спустя почти четыре столетия мы не устаем удивляться тому, что математические методы прекрасно подходят для описания нашего мира. Еще большее изумление вызывают естественнонаучные открытия, сделанные на основе математического анализа уравнений. Создание любой сложной конструкции – от хитроумной дорожной развязки до квантового компьютера – сопряжено с математическими расчетами. Для полноценного понимания действия гравитации или квантовых явлений нам также не обойтись без математики.

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.

Тим Глинн-Джонс — автор этой необычной книги — знает о цифрах все. Вы убедитесь в этом, прочитав его занимательные истории «от нуля до бесконечности». С их помощью вы перестанете опасаться числа 13, разберетесь, какую страшную тайну хранит в себе число 666, узнаете, чем отличается американский миллиард от европейского и почему такие понятия как Время, Вселенная и Смерть, можно определить только через бесконечность.

Статистика — наука, которая кажется знакомой, ведь мы привыкли слышать упоминания о ней в СМИ. Иногда к ней относятся несерьезно, потому что статистические прогнозы не всегда сбываются. Однако этот факт не отменяет чрезвычайной важности статистических исследований. Цель статистики — получить знания объективным способом на основе наблюдений и анализа реальности. В этой книге затронуты некоторые наиболее интересные аспекты статистики, например, вопросы о том, как провести сбор данных и как представить информацию с помощью графиков.

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.

Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.

Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.