Том 31. Тайная жизнь чисел. Любопытные разделы математики - [27]
«Великий геометр, Лаплас был более чем посредственным администратором. Первые шаги на этом поприще убедили нас в том, что мы в нем обманулись. Замечательно, что ни один вопрос практической жизни не представлялся Лапласу в его истинном свете. Он везде искал какие-то субтильности, мелочи, идеи его отличались загадочностью, наконец, он весь был проникнут духом «бесконечно малых», который он вносил и в администрацию».
Не слишком лестная характеристика из уст человека, который превосходно разбирался в людях. Любопытно, что Наполеон упрекал Лапласа в том, что за деревьями он не видит леса, в то время как в своих книгах тот действовал совершенно иначе: Жан-Батист Био рассказывал, что Лаплас часто употреблял выражение «И est aise de voir que…» («Нетрудно видеть, что…»), когда прекрасно знал, каким должен быть конечный результат, но ленился вдаваться в детали.
Лаплас умер благородным человеком: после свержения Наполеона он перешел на сторону бурбонов и получил титул маркиза де Лапласа.
Физик и математик Андре Мари Ампер (1775–1836) был одним из первооткрывателей электромагнетизма. В память о нем названа единица силы тока — ампер. Известно также, что этот несколько забывчивый человек полностью соответствовал стереотипу о рассеянном ученом. Однажды Ампер вступил в оживленную дискуссию с посетителем Коллеж де Франс, не понимая, что неизвестного ему господина, с которым он так жарко спорил, звали Наполеон Бонапарт.
Как-то раз Ампер, едучи в наемном экипаже, испытал прилив вдохновения и, не теряя ни минуты, записал свои мысли, чтобы не забыть их. Но Ампер забыл, где именно он их записал, и никак не мог найти своих заметок. Методом исключения он пришел к очевидному выводу: заметки были сделаны не на клочке бумаги, а на самом экипаже, который все это время по-прежнему ездил по городу, и его хозяин даже не подозревал, что вместе с пассажирами везет сокровенные тайны науки. У Ампера оставался единственный выход: осмотреть все конные экипажи. И в конце концов, он нашел потерянные записи.
Так, правда на латыни — Princeps mathematicorum, — современники называли Карла Фридриха Гаусса (1777–1855), одного из величайших ученых, в честь которого названы астероид и кратер на Луне. Его портрет бесчисленное количество раз изображался на почтовых марках и даже украшал собой банкноты. Гаусс был настоящим сыном своей эпохи: он происходил из скромной семьи, был вундеркиндом, отличался невероятным умом и вряд ли был хорошим семьянином. К примеру, он бил сыновей палкой и запрещал им изучать науки, чтобы они не запятнали безупречную репутацию фамилии Гаусс. А когда ученому сообщили, что его жена находится при смерти, он ответил: «Одну минуту, дайте закончить работу».
Английский математик Джон Вильсон (1741–1793), ознакомившись с трудами арабских авторов, предположил, что
но никак не мог доказать свою гипотезу. В итоге он заявил, что для доказательства потребуется ввести новую нотацию теории чисел. Первое доказательство нашел Лагранж, однако Гаусс показал, что
Это намного более общий результат, чем тот, что искал Вильсон. Но гораздо удивительнее то, что Гаусс получил его всего за несколько минут, только ознакомившись с гипотезой. Он весьма едко отозвался о попытках Вильсона доказать гипотезу: «Вильсону требовалась не новая нотация, а некоторое представление, о чем идет речь».
Доказательства Гаусса всегда были безупречными, а порой — и совершенно оригинальными. Ученый скрывал источники своего вдохновения и не описывал, каким путем пришел к теоремам. Нильс Хенрик Абель говорил, что Гаусс напоминает ему лису, заметающую следы хвостом.
Появлением гиперболической геометрии, одной из неевклидовых геометрий, мы обязаны русскому ученомуНиколаю Лобачевскому (1792–1856). В 1972 году в знак признания заслуг именем этого геометра был назван астероид.
Лобачевский был образцовым и трудолюбивым чиновником. Он занял пост преподавателя математики в Казанском университете, а затем, сам того не желая, получал всё новые и новые должности либо по болезни третьих лиц, либо по решению администрации. В одно и то же время он преподавал, заведовал музеем, библиотекой и университетской обсерваторией, а также исполнял обязанности инспектора. Неудивительно, что в конечном итоге Лобачевский оказался на посту ректора университета.
Рассказывают, что он всегда принимал решения без колебаний и лично участвовал во всем. Не было занятия, которое казалось ему недостойным его высокого поста: ученый спокойно мог взять тряпку и почистить музейные экспонаты. Как-то раз знатный посетитель — по некоторым источникам, дипломат, — войдя в здание университета, попросил консьержа, с головой погруженного в дела, провести для него экскурсию. К удивлению посетителя, консьерж проявил не только прекрасные манеры, но и невероятную осведомленность. Гость был настолько впечатлен, что попытался дать ему чаевых, но, к его удивлению, служитель оскорбленно отказался.
Должно быть, вы уже догадались, что консьержем был не кто иной, как Николай Лобачевский, ректор университета. Вскоре посетитель попал на официальный прием и, к своему стыду, обнаружил, что мнимый консьерж был главой университета — он находился в числе приглашенных и был одет по всем правилам этикета.
Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.
Леонард Эйлер, без всякого сомнения, был самым выдающимся математиком эпохи Просвещения и одним из самых великих ученых в истории этой науки. Хотя в первую очередь его имя неразрывно связано с математическим анализом (рядами, пределами и дифференциальным исчислением), его титаническая научная работа этим не ограничивалась. Он сделал фундаментальные открытия в геометрии и теории чисел, создал с нуля новую область исследований — теорию графов, опубликовал бесчисленные работы по самым разным вопросам: гидродинамике, механике, астрономии, оптике и кораблестроению.
Из этой книги читатель узнает о жизни и научных достижениях самых выдающихся женщин-математиков разных эпох. Это Гипатия и Лукреция Пископия, Каролина Гершель и Мэри Сомервилль, Ада Лавлейс и Флоренс Найтингейл, Софья Ковалевская и Эмми Нётер, Грейс Хоппер и Джулия Робинсон. Хотя они жили в разные времена и исследовали разные области математики, всех их объединяла любовь к этой науке, а также стремление сломать сложившиеся в обществе стереотипы. Своим примером они доказали всему миру: женщины обладают такими же интеллектуальными способностями, как и мужчины, и преуспели в математике чуть меньше исключительно по социальным причинам.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.