Том 3. Простые числа. Долгая дорога к бесконечности - [9]

Шрифт
Интервал

1 x 2 x 3 x 4 x 5 + 2 = 122

1 x 2 x 3 x 4 x 5 + 3 = 123

1 x 2 x 3 x 4 x 5 + 4 = 124

1 x 2 x 3 x 4 x 5 + 5 = 125

Для краткой записи произведения последовательных чисел используется восклицательный знак:

1 x 2 x 3 x 4 = 4!

1 x 2 x 3 x 4 x 5 = 5!

В математике такое выражение называется «факториал». Например, факториал числа 6 равен

6! = 1 x 2 x 3 x 4 x 5 x 6 = 720.

Выражения для четырех последовательных составных чисел удобнее записать следующим образом:

5! + 2

5! + 3

5! + 4

5! + 5

Таким образом можно составить любой ряд последовательных чисел, не содержащий простых чисел. Например, если мы хотим получить сто последовательных составных чисел, достаточно написать:

101! + 2,

101! + 3,

101! + 4,

и так далее до 101! + 101.

Это означает, что в ряду натуральных чисел существуют промежутки любой длины, в которых нет простых чисел. Таким же образом мы могли бы построить ряд из пяти триллионов последовательных чисел, в котором простое число не появится.

Получается, что простые числа встречаются все реже по мере продвижения по ряду натуральных чисел, и, следовательно, при приближении к бесконечности наступит момент, когда простые числа больше не появятся.

Конечно, этот вывод неверен, так как мы знаем, что по теореме Евклида множество простых чисел бесконечно, и что каким бы длинным ни был ряд составных чисел, в конце концов появится простое число.

* * *

С ПОМОЩЬЮ КАЛЬКУЛЯТОРА

Хорошо бы использовать мощность компьютеров и написать программу, которая находила бы длинные ряды чисел, не содержащие простых чисел. В самом деле, алгоритм довольно прост, но нужно иметь в виду, что, работая с выражениями, содержащими факториалы, можно довольно быстро исчерпать память калькулятора. Факториалы будут расти с головокружительной быстротой. Это можно проверить на любом карманном калькуляторе, используя клавишу факториала (символ«!»). Посчитаем факториалы первых десяти чисел:

1! = 1; 2! = 2; 3! = 6; 4! = 24; 5! = 120; 6! = 720; 7! = 5040; 8! = 40320; 9! = 362880; 10! =3628800.

Большинство калькуляторов не смогут посчитать факториалы чисел, которые больше 70.

* * *

Чувство ритма

Во время концерта иногда возникает момент, когда публика оживляется и начинает аплодировать в такт музыке. Однако через некоторое время синхронность между ритмом хлопков аудитории и ритмом игры музыкантов нарушается. В случае простых ритмов синхронность может сохраняться довольно долго, но для более сложных ритмов это практически невозможно. Воспользуемся этой аналогией в отношении попыток математиков навязать чувство ритма простым числам, например, «один, два, три… вперед!» Но это не работает: простые числа не встречаются через каждые три составных числа. Попробуем по-другому: «один, два, три, двадцать, сто… вперед!» И это не работает. Мы могли бы повторять подобные попытки до бесконечности. Даже сегодня мы не знаем, подчиняются простые числа некоему чертовски сложному ритму или у них совсем нет чувства ритма.

Как найти закономерность в последовательности чисел? Для этого существует много способов. Важно, чтобы эта закономерность предсказывала появление следующего числа в последовательности. Например, для последовательности

2, 4, 6, 8, …

очевидно, следующее число будет 10.

В случае последовательности

1, 3, 5, 7, …

также легко предсказать, что следующее число — 9. Первый пример представляет собой последовательность четных чисел, а второй — нечетных. Еще один пример:

2, 3, 5, 9, 17….

Здесь каждое число получается умножением предыдущего на 2 и вычитанием из результата единицы.

Выражаясь языком математики, закономерность точно определена, если имеется «общий член» — выражение, позволяющее получить значение каждого члена последовательности, просто подставив значение индекса n. Например, для последовательности четных чисел формула общего члена выглядит так:

а>n= 2n.

Если n = 1, то а>1 = 2 х 1 = 2.

Если n = 2, то а>2  = 2 х 2 = 4.

Если n = 3, то а>3 = 2 х 3 = 6.

В случае последовательности нечетных чисел мы имеем следующую формулу общего члена:

а>n = 2n + 1.

Эту формулу можно использовать для нахождения значения любого члена. Например, чтобы найти значение члена, занимающего двадцать седьмую позицию в последовательности, мы подставим n = 27 в формулу общего члена:

а>27 = 2 х 27 + 1 = 55.

Нахождение формулы общего члена эквивалентно нахождению закономерности в данной последовательности. Возникает вопрос: поскольку мы можем найти любой член последовательности по формуле общего члена, можем ли мы найти эту формулу, имея достаточное количество членов последовательности? Для многих последовательностей ответ на этот вопрос часто является довольно сложной задачей.

Например, предсказать следующий член в последовательности



не так уж легко. И действительно, формула общего члена в данном случае выглядит так:



Чтобы найти первые три члена, подставим соответствующие значения n:



На протяжении многих веков это являлось одной из главных задач математиков в изучении простых чисел, но попытки найти закономерности и правила всегда заканчивались неудачей и разочарованием. Может, этот хаотический набор чисел действительно регулируется случайностью? Но математики, по-видимому, умеют ценить неудачи: пусть их усилия не достигают цели; даже в этом случае, возможно, будут найдены новые пути, разработаны другие математические методы или открыты новые понятия. Часто кажется, что поставленная цель была лишь предлогом для работы над новой задачей. Поэтому простые числа были и продолжают оставаться одним из самых богатых источников парадоксов и гипотез.


Еще от автора Энрике Грасиан
Том 18. Открытие без границ. Бесконечность в математике

Большинство из нас испытывает головокружение, думая о бесконечности: ее невозможно себе представить!Быть может, именно поэтому она является неисчерпаемым источником вдохновения. В погоне за бесконечностью ученым пришлось петлять между догмами и парадоксами, вступать на территорию греческой философии, разбираться в хитросплетениях религиозных измышлений и секретов тайных обществ.Но сегодня в математике бесконечность перестала быть чем-то неясным и превратилась в полноценный математический объект, подобный числам и геометрическим фигурам.


Рекомендуем почитать
В поисках бесконечности

За последнее столетие одно из центральных мост в математической науке заняла созданная немецким математиком Г. Кантором теория бесконечных множеств, понятия которой отражают наиболее общие свойства математических объектов. Однако в этой теории был вскрыт ряд парадоксов, вызвавших у многих видных ученых сомнения в справедливости ее основ. В данной книге излагается в популярной форме, какими путями шла человеческая мысль в попытках понять идею бесконечности как в физике, так и в математике, рассказывается об основных понятиях теории множеств, истории развития этой науки, вкладе в нее русских ученых. Книга предназначена для широких кругов читателей, желающих узнать, как менялось представление о бесконечности, чем занимается теория множеств и каково современное состояние этой теории.


Математика на ходу

Как приобщить ребенка к математике и даже сделать так, чтобы он ее полюбил? Замечательные британские популяризаторы науки Роб Истуэй и Майк Эскью нашли веселый и легкий путь к детскому сердцу, превратив страшное пугало – математику – в серию увлекательных игр для детей от 4 до 14 лет. Пусть ваш ребенок исподволь овладевает математической премудростью, играя изо дня в день в угадайку, числовые прятки, двадцаточку и зеленую волну. Вы сможете играть за столом, в очереди к врачу, в магазине, на прогулке, используя подручный счетный материал: машины на стоянке, товары на полках супермаркета, мотоциклистов на дороге… И конечно, ничто не мешает вам переиначивать придуманные авторами математические забавы на свой лад, приспосабливая их ко вкусам и потребностям собственных детей.


Значимые фигуры

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Золотое сечение. Математический язык красоты

Можно ли выразить красоту с помощью формул и уравнений? Существует ли в мире единый стандарт прекрасного? Возможно ли измерить гармонию с помощью циркуля и линейки? Математика дает на все эти вопросы утвердительный ответ. Золотое сечение — ключ к пониманию секретов совершенства в природе и искусстве. Именно соблюдение «божественной пропорции» помогает художникам достигать эстетического идеала. Книга «Золотое сечение. Математический язык красоты» открывает серию «Мир математики» — уникальный проект, позволяющий читателю прикоснуться к тайнам этой удивительной науки.


Том 20. Творчество  в  математике. По каким правилам ведутся игры разума

В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.


Том 16. Обман чувств. Наука о перспективе

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.


Секреты числа Пи. Почему неразрешима задача о квадратуре круга

Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.