Том 3. Простые числа. Долгая дорога к бесконечности - [15]

Шрифт
Интервал




Банкнота 10 швейцарских франков 1997 г. выпуска с портретом Эйлера и изображениями гидравлической турбины, солнечной системы и света, проходящего через линзу. Все это иллюстрирует вклад Эйлера в математику.


Эйлер всегда проявлял особый интерес к простым числам. Он составил таблицу всех простых чисел от 1 до 100 000 и нашел формулы, которые позволяли ему получать невероятные количества таких чисел. Одной из наиболее интересных является следующая формула:

х>2+ х + q,

которая генерирует простые числа для любых значений х, больших 0 и меньших q — 2.

Эйлер нашел все такие простые числа для = 2, 3, 5, 7, 11 и 17. В то время математика была экспериментальной, ее целью было получение практических результатов, поэтому строгие доказательства часто отсутствовали. Однако в отличие от Ферма Эйлер не скрывал своей работы. Если у него было доказательство, он публиковал его, а если факт приводился без доказательства, значит, оно не было найдено.

Работы Эйлера привели к важным изменениям в мире математики, вызвав медленный, но неумолимый сдвиг научной мысли. Среди многочисленных достижений Эйлера есть три, которые оказали решающее влияние на дальнейшие исследования в теории простых чисел: понятия функции, бесконечных сумм и мнимых величин.

Позже мы еще вернемся к ним.


Функции

Эйлер заложил основы того, что в последующие века будет называться математическим анализом. Именно он ввел обозначение функции, f(х), которое используется и в настоящее время. Функция работает как устройство, которое преобразует числа в другие числа в соответствии с установленным правилом. (Мы имеем в виду действительные функции действительного переменного.) Например, если правило гласит, что к каждому числу нужно прибавить определенное число, например, 3, то функция записывается следующим образом:

f(х) = x + 3.

Теперь функцию можно применить к любым значениям переменной:

f(1) = 1 + 3 = 4;

f(2) = 2 + 3 = 5;

f(24) = 24 + 3 = 27;

f(0,32) = 0,32 + 3 = 3,32.

Действительные функции действительного переменного ставят в соответствие каждому действительному числу другое действительное число. Например, функция f(x) = + 1 каждое значение х увеличивает в два раза и прибавляет единицу. Составим таблицу значений этой функции:



Эта таблица позволяет построить график функции по вышеуказанным координатам точек:



Это очень простой график, он представляет из себя прямую линию, построить которую можно всего по двум точкам. С другой стороны, функция вида f(х) = х>2 будет иметь следующую таблицу значений:



И график этой функции уже не так легко построить:



Фактически, чем больше у нас точек, тем более точный график можно построить, но если выражение функции не является линейным, то есть если переменная х возводится в степень, большую единицы, графиком функции является кривая линия.

В некоторых случаях эта кривая известна, а в других она оказывается очень непредсказуемой и ее нельзя построить вручную. Одним из величайших достижений Эйлера является представление сложных функций в простых терминах.


Бесконечные суммы

Еще Эйлер для обозначения суммы, или «суммирования», ввел специальный символ, который используется и в современной математике. Это знак Σ — заглавная буква «сигма» греческого алфавита, а также первая буква слова «сумма».

Выражение суммирования записывается следующим образом:

Σ>i=5>j=1i,

где есть переменная, в данном случае i, и индексы, показывающие, как эта переменная изменяется. В данном примере i изменяется от 1 до 5. Таким образом:

Σ>i=5>j=1i = 1 + 2 + 3 + 4 + 5;

Σ>i=3>j=1(n + 1) = (1 + 1) + (2 + 1) + (3 + 1);

Σ>i=4>j=1 n>2 = 1>2 + 2>2 + 3>2 + 4>2.

Обычно запись выражения упрощают, указывая в качестве верхнего индекса лишь последнее значение переменной:

Σ>5>j=1 i = 1 + 2 + 3 + 4 + 5.

Это означает, что i меняется от 1 до 5.

Если верхний предел не является числом, то используется символ бесконечности, означающий, что сумма бесконечна. Например:


Хотя это может показаться странным, но существуют бесконечные суммы, результат которых является конечным числом. Ряды, имеющие такую сумму, называются сходящимися. Например, ряд



имеет конечную сумму, приблизительно равную 2. Так как члены ряда становятся все меньше и меньше, в какой-то момент каждый следующий член будет настолько мал, что его добавление ничего не изменит, и итоговая сумма будет конечным числом. Безусловно, это не совсем точное объяснение. Можно предположить, что ряд типа



также имеет конечную сумму, но это не так. Данный ряд, которым особенно интересовался Эйлер, называется гармоническим. Эйлер использовал его, чтобы получить еще одно доказательство бесконечности множества простых чисел.

* * *

БАЗЕЛЬСКАЯ ЗАДАЧА

БратьяЯкоб (1654–1705) и Иоганн (1667–1748)Бернулли занимались изучением гармонических рядов. Особенно активно они работали в период между 1689 и 1704 гг. Именно они доказали, что некоторые ряды расходятся. Воодушевленные результатами, они взялись за ряд обратных квадратов:



Якоб показал, что ряд сходится, и ему даже удалось доказать, что сумма ряда меньше или равна двум, но он не смог найти точное значение. Он так увлекся этой проблемой, что сказал: «Велика будет наша благодарность, если кто-нибудь найдет и сообщит нам о том, что до сих пор избегало нашего внимания». Эта проблема известна как «базельская задача», потому что Якоб заведовал кафедрой математики в университете швейцарского города Базеля, и именно там он произнес свои знаменитые слова.


Еще от автора Энрике Грасиан
Том 18. Открытие без границ. Бесконечность в математике

Большинство из нас испытывает головокружение, думая о бесконечности: ее невозможно себе представить!Быть может, именно поэтому она является неисчерпаемым источником вдохновения. В погоне за бесконечностью ученым пришлось петлять между догмами и парадоксами, вступать на территорию греческой философии, разбираться в хитросплетениях религиозных измышлений и секретов тайных обществ.Но сегодня в математике бесконечность перестала быть чем-то неясным и превратилась в полноценный математический объект, подобный числам и геометрическим фигурам.


Рекомендуем почитать
Математические головоломки профессора Стюарта

Книга «Математические головоломки профессора Стюарта» известного математика и популяризатора математической науки Иэна Стюарта – сборник задач, головоломок и увлекательных историй. Повествование в книге основано на приключениях детектива-гения Хемлока Сомса и его верного друга, доктора Джона Ватсапа. Они ломают головы над решением задач с математической подоплекой.Автор уделяет внимание математическим датам, загадкам простых чисел, теоремам, статистике и множеству других интересных вопросов. Эта умная, веселая книга демонстрирует красоту математики.


Озадачник: 133 вопроса на знание логики, математики и физики

Может ли завтра начаться сегодня? Как быстро перемножить в уме 748 на 1503? Каков минимальный размер черной дыры? Почему не тают ледяные жилища эскимосов, когда в них разводят огонь? Авторы предлагают вам проверить свои знания математики, физики и логики. Каверзные вопросы, варианты ответов с подвохом и подробные решения помогут провести время интересно и с пользой.


Том 31. Тайная жизнь чисел. Любопытные разделы математики

Задача этой книги — опровергнуть миф о том, что мир математики скучен и скуп на интересные рассказы. Автор готов убедить читателей в обратном: история математики, начиная с античности и заканчивая современностью, изобилует анекдотами — смешными, поучительными и иногда печальными. Каждая глава данной книги посвящена определенной теме (числам, геометрии, статистике, математическому анализу и так далее) и связанным с ней любопытным ситуациям. Это издание поможет вам отдохнуть от серьезных математических категорий и узнать чуть больше о жизни самих ученых.


Том 40. Математическая планета. Путешествие вокруг света

В этой книге пойдет речь об этноматематике, то есть об особенностях методов счисления, присущих разным народам. Хотя история современной математики — часть европейского культурного наследия, опирается она на неакадемические пласты, существовавшие задолго до возникновения современной культуры. Этноматематика охватывает весь перечень математических инструментов, созданных разными народами для решения определенных задач. Конечно, она далека от знакомой нам академической науки и, скорее, опирается на практический опыт, а потому вдвойне интересна.


Том 32. Бабочка и ураган. Теория хаоса и глобальное потепление

Хаос буквально окружает нас. Солнечная система, популяции животных, атмосферные вихри, химические реакции, сигналы головного мозга и финансовые рынки — вот лишь некоторые примеры хаотических систем. Но по-настоящему удивительно то, что хаотическими могут быть простые системы, например двойной маятник. Очередной том из серии «Мир математики» рассказывает о хаосе, то есть о беспорядочном и непредсказуемом поведении некоторых динамических систем, а также о связи теории хаоса с глобальным изменением климата.


Геометрия: Планиметрия в тезисах и решениях. 9 класс

В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.


Том 16. Обман чувств. Наука о перспективе

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.


Том 13. Абсолютная точность и другие иллюзии. Секреты статистики

Статистика — наука, которая кажется знакомой, ведь мы привыкли слышать упоминания о ней в СМИ. Иногда к ней относятся несерьезно, потому что статистические прогнозы не всегда сбываются. Однако этот факт не отменяет чрезвычайной важности статистических исследований. Цель статистики — получить знания объективным способом на основе наблюдений и анализа реальности. В этой книге затронуты некоторые наиболее интересные аспекты статистики, например, вопросы о том, как провести сбор данных и как представить информацию с помощью графиков.


Секреты числа Пи. Почему неразрешима задача о квадратуре круга

Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.


Дилемма заключенного и доминантные стратегии. Теория игр

Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.