Том 27. Поэзия чисел. Прекрасное и математика - [7]
«Метод» Архимеда и письменные источники
Древнейшие рукописи с трудами Архимеда, о которых нам известно, были созданы в Константинополе в Х-м или, что маловероятно, в IX веке. Должны были существовать и более древние рукописи, в том числе и написанные самим Архимедом в III веке до н. э., но все они утрачены.
Архимед наверняка создал все или большинство своих трудов в изоляции от других ученых, в родных Сиракузах. В этом городе он родился в 287 году до н. э., однако в юности учился в Александрии — центре эллинистической математики и науки вообще (Александрия имела этот статус начиная с момента основания Александром Македонским и до V века). Закончив обучение в Александрии, Архимед вернулся в Сиракузы, где прожил большую часть жизни. Если говорить современным языком, то научные труды Архимеда, дошедшие до наших дней, представляют собой монографии. Они были написаны в разные годы и попали из Сиракуз в Александрию и даже в Самос, где жил Конон, один из самых близких друзей Архимеда. В число этих монографий входит «Метод», представляющий для нас наибольший интерес. Это длинное письмо Архимеда к Эратосфену, который в то время был главой Александрийской библиотеки. В этом письме Архимед излагает свой метод совершения научных открытий.
Весьма вероятно, что все произведения Архимеда попали в Александрию разными путями, и ни при его жизни, ни в первые годы после его смерти не образовывали единое целое. По своему масштабу и размаху труды Архимеда значительно превосходят «Начала» Евклида. Большая часть «Начал» содержала элементарные рассуждения, и это заставляет предполагать, что было создано множество копий труда Евклида. А вот работы Архимеда имели более высокий уровень и были понятны лишь посвященным. Естественно, что они существовали лишь в нескольких копиях, которые, возможно, хранились в Александрийской библиотеке или в ее отделении в Серапеуме. В результате часть копий была утеряна, другая серьезно пострадала. Ущерб, нанесенный произведениям Архимеда, стал заметен уже спустя полвека после его смерти — об этом упоминали авторы, которые не смогли найти некоторые из теорем Архимеда. Однако из других источников известно, что еще в III–IV веках существовали произведения Архимеда, до наших дней не дошедшие, — возможно, они были утеряны при разрушении Серапеума в 391 году.
В первой трети VI столетия была предпринята попытка объединить труды Архимеда, упорядочить их и снабдить комментариями. Нельзя утверждать, что это была первая из подобных попыток, но упоминаний о более ранних собраниях сочинений Архимеда не сохранилось. Следующее действие этой истории развернулось в Константинополе, когда на смену Восточной Римской империи пришла Византийская империя, а императора Юстина, грубого и безграмотного служаку, сменил образованный Юстиниан, знаток богословия и права. Во время его правления, возможно, возродился интерес к античной математике. Это не привело к появлению видных математиков, однако в результате для потомков были сохранены некоторые важные труды, в том числе произведения Архимеда. Это стало своеобразным реквиемом по греческой науке: в 529 году Юстиниан издал указ о закрытии Академии Платона и других научных и философских центров, которые якобы проповедовали языческое учение.
Спустя три года император принял решение построить собор Святой Софии. Именно авторы проекта нового собора, Исидор Милетский и Анфимий Тралльский, помогли сберечь научное наследие греков, повелев найти и переписать все сохранившиеся к тому времени классические труды, а также составить их списки. Один из учеников Исидора Милетского и Анфимия Тралльского, Евтокий, составил сборник трудов Архимеда, которые смог найти, и прокомментировал три из них.
Два столетия спустя Византия вновь пережила период культурного, военного и религиозного расцвета. Именно тогда были составлены три рукописи на греческом языке, благодаря которым труды Архимеда, дошедшие до наших дней, стали известны ученым последнего тысячелетия. Эти три рукописи, по-видимому, появились в одном и том же городе, Константинополе, в IX–X веках, однако они имели очень разную судьбу. Из трех рукописей до наших дней дошла всего одна, и она не оставила сколько-нибудь заметного следа в истории. А вот две исчезнувшие оказали огромное влияние на европейскую математику XVII века, когда, говоря современным языком, Архимед был самым цитируемым математиком, хотя его работы насчитывали уже почти две тысячи лет. Обозначим эти три рукописи A, В и С. Рукописи А и В, вместе либо по отдельности, в XII веке попали из Константинополя на Сицилию, родину Архимеда.
Рукопись В, возможно, содержала труды по механике и оптике. Она исчезла в начале XIV века и о ней известно лишь то, что в XIII веке на ее основе некоторые труды Архимеда были переведены на латынь.
Рукопись А жила бурной жизнью и пропала в середине XVI века, однако после нее осталось довольно много потомков — копий, выполненных в середине XV — середине XVI века, которые дошли до наших дней. Четыре копии, сохранившиеся лучше остальных, находятся в Национальной библиотеке святого Марка в Венеции, еще две — в Национальной библиотеке Франции.
Бесконечно малая величина — это числовая функция или последовательность, которая стремится к нулю. Исчисление бесконечно малых — общее понятие для дифференциальных и интегральных исчислений, составляющих основу современной высшей математики. Анализ бесконечно малых — вне всяких сомнений, наиболее мощное и эффективное средство изучения природы, когда-либо созданное учеными. Становление этого понятия связано с именами блистательных математиков: Архимеда, Исаака Ньютона, Готфрида Вильгельма Лейбница, Огюстена Луи Коши и Карла Вейерштрасса.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.