Том 26. Мечта об идеальной карте. Картография и математика - [49]
очень велико. К примеру, Гренландия выглядит больше, чем Африка, хотя площадь Гренландии составляет всего лишь около 2175 000 км>2 по сравнению с площадью африканского континента, равной 29 800 000 км>2.
Петерс, который был докой в пропаганде, свел обсуждение к противостоянию между «расистской» картой Меркатора и своей «справедливой» картой, умолчав о более сложных картографических аспектах, в том числе о научном подходе к составлению карт и о существовании сотен различных проекций, которые можно использовать в разных целях и многие из которых являются равновеликими. Кроме того, в книге «Новая картография» (1983) Петерс поместил истинные утверждения (например, что карта Меркатора искажает площади и центральным в ней является Гринвичский меридиан или что проекция Петерса является равновеликой) рядом с ложными (так, он указывал, что равновеликие проекции, созданные до него, «были столь неудобны и содержали столько ошибок…» или что карта Петерса обладает «достоверностью масштаба»), применив псевдонаучный язык.
В то время общество уже было готово использовать карты мира, составленные в проекциях, отличных от проекции Меркатора: картографы прекрасно понимали, что эта проекция превосходна, но не подходит для изображения всей планеты из-за больших искажений в определенных областях. Петерсу удалось положить конец многолетней популярности проекции Меркатора и вывести на первый план свою карту, оставив в стороне широчайший спектр картографических проекций, сохраняющих площади (например, гомолосинусоидальную проекцию Гуда, проекцию Моллвейде, синусоидальную проекцию Сансона-Флемстида и проекцию Eckert IV), другие параметры (например, равнопрямоугольную проекцию Миллера) и иные компромиссные варианты с очень малыми вносимыми искажениями (например, проекции, использованные Национальным географическим обществом, проекция Артура Робинсона 1961 года и тройная проекция Винкеля 1921 года).
Тройная проекция Винкеля — это компромиссное решение: она не сохраняет ни одно из метрических свойств, однако вносимые ею искажения невелики.
* * *
ПРОЕКЦИЯ ДИМАКСИОН
Ричард Бакминстер Фуллер, создатель геодезического купола, разработал собственную картографическую проекцию. Его идея заключалась в проецировании земной поверхности на правильный или полуправильный многогранник с последующим развертыванием этого многогранника на плоскости. В проекции Димаксион (от англ. DYnamics MAXimum tensiON — «максимальное динамическое растяжение»; это название не является торговой маркой, а выражает основной принцип, которым руководствовался Фуллер), запатентованной в 1946 году, Фуллер использовал кубоокгаэдр (многогранник, имеющий восемь треугольных и шесть квадратных граней), а в версии этой проекции от 1954 года он применил слегка видоизмененный икосаэдр (многогранник, имеющий 20 треугольных граней). Использованная Фуллером проекция не является гномонической, а определяется построением, подобным тому, что используется при изображении геодезического купола. Для карты, составленной в проекции Димаксион, характерны малые искажения площадей и форм. Кроме того, вносимые ею искажения достаточно равномерны. Хотя многогранник, используемый в этой проекции, можно развернуть на плоскости разными способами, как правило, используется развертка, в которой Северный полюс оказывается примерно в центре карты. На карте в проекции Димаксион изображен мир, в котором нет ни севера, ни юга. Эту карту можно рассматривать с любой стороны, а континенты выглядят не разделенными частями суши, а скорее островами посреди океана.
Карта в проекции Димаксион, выполненная на основе икосаэдра. Пунктиром отмечены линии сгиба.
* * *
Возмущение научного мира было вызвано, с одной стороны, тем, что общество пренебрежительно отнеслось к их работам в области картографии, с другой стороны — тем, что Петерс при защите своей проекции умело манипулировал аргументами. Существование проекций, сохраняющих площади, доказывается в статье Ламберта от 1772 года, в которой он представил свою равновеликую цилиндрическую проекцию, а также еще одну, азимутальную. Позднее было описано множество других равновеликих проекций. Кроме того, проекция Галла — Петерса сохраняет площади, однако искажение форм на ней очень велико: территории, изображенные в центре карты, значительно вытягиваются в направлении «север — юг», а участки земной поверхности, расположенные севернее 45° с.ш. и южнее 45° ю. ш. — сжимаются. По иронии, искажение форм заметнее всего проявляется на территории Африки, Центральной и Южной Америки, а на территории Европы, США и Канады, которые находятся ближе к параллели 45° с.ш., искажения меньше. Приведем несколько любопытных цитат и карту в проекции Снайдера:
«[Карта мира в проекции Петерса] не лучше других, похожих карт, которые использовались последние 400 лет»;
«Проекция Петерса, по-видимому, перешла в ту же плоскость, что и «единственная вера» или «лекарство от всех болезней». В попытках привлечь интерес общества к своей карте Петерс забыл об объективности и важных научных фактах».
Карта мира, выполненная в гомолосинусоидальной проекции
Нечасто математические теории опускаются с высоких научных сфер до уровня массовой культуры. Тем не менее на рубеже XIX и XX веков люди были увлечены возможностью существования других измерений за пределами нашей трехмерной реальности. Благодаря ученым, которые использовали четвертое измерение для описания Вселенной, эта идея захватила воображение масс. Вопросом многомерности нашего мира интересовались философы, богословы, мистики, писатели и художники. Попробуем и мы проанализировать исследования математиков и порассуждать о том, насколько реально существование других измерений.
«Умение математиков заглядывать в будущее наделило тех, кто понимает язык чисел, огромным могуществом. От астрономов древних времен, способных предсказать движения планет в ночном небе, до сегодняшних управляющих хедж-фондами, прогнозирующих изменения цен на фондовом рынке, – все они использовали математику, чтобы постичь будущее. Сила математики в том, что она может гарантировать стопроцентную уверенность в свойствах мира». Маркус дю Сотой Профессор математики Оксфордского университета, заведующий кафедрой Симони, сменивший на этой должности Ричарда Докинза, Маркус дю Сотой приглашает вас в незабываемое путешествие по необычным и удивительным областям науки, лежащей в основе каждого аспекта нашей жизни. В формате pdf A4 сохранен издательский дизайн.
Хотя в природе всегда существовали объекты с неравномерной и даже хаотичной структурой, ученые долгое время не могли описать их строение математическим языком. Понятие фракталов появилось несколько десятков лет назад. Именно тогда стало ясно, что облака, деревья, молнии, сталактиты и даже павлиний хвост можно структурировать с помощью фрактальной геометрии. Более того, мы сами в состоянии создавать фракталы! В результате последовательного возведения числа в квадрат появляется удивительное по красоте и сложности изображение, которое содержит в себе новый мир…
Монография по теории расчета нефтяных аппаратов (оболочек корпусов). Рассмотрены трехмерная и осесимметричная задачи теории упругости, реализация расчета методом конечных элементов. Написана для обмена опытом между специалистами. Предназначается для специалистов по разработке конструкций нефтяного статического оборудования (емкостей, колонн и др.) проектных институтов, научно-исследовательских институтов, заводов нефтяного машиностроения, инжиниринговых компаний, профессорско-преподавательского состава технических университетов.
Всем известно, что существуют тройки натуральных чисел, верных для Теоремы Пифагора. Но эти числа в основном находили методом подбора. И если доказать, что есть некий алгоритм нахождения этих троек чисел, то возможно утверждение о том, что 10 проблема Гильберта неразрешима ошибочно..
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.