Том 22. Сон разума. Математическая логика и ее парадоксы - [9]
* * *
РАЗРЕШИМАЯ СИСТЕМА С БЕСКОНЕЧНЫМ ЧИСЛОМ АКСИОМ
Одну из возможных рекурсивно перечислимых систем с бесконечным числом аксиом можно получить, если развернуть одну из аксиом Пеано в бесконечное число утверждений. Аксиому «О не следует ни за каким натуральным числом»» можно считать сжатой формой множества высказываний: «О не следует за нулем», «О не следует за единицей», «О не следует за двойкой» и т. д. до бесконечности. Предположим, что мы хотим определить, является ли некоторое высказывание одной из этих аксиом. Разумеется, оно будет принадлежать приведенному выше списку, если будет начинаться со слов «О не следует за…», а далее будет указано некоторое число. Напомним, что «единица»» в действительности означает «число, следующее за нулем», «два» — «число, следующее за числом, следующим за нулем» и т. д. Нам останется только подсчитать, сколько раз в нашем высказывании встречается слово «следующее». Следовательно, рассматриваемая нами система аксиом является рекурсивно перечислимой.
* * *
Подведем итог. Аксиоматический метод появился примерно в 300 году до н. э., с написанием «Начал». Евклид считал, что аксиомы являются очевидными истинами, соответствующими нашим представлениям о предметах в физическом мире, однако открытие новых геометрий в середине XIX века покончило с этим реалистическим подходом. С того времени аксиомами называются всего лишь высказывания, выбранные из соображений удобства в качестве основы математической теории.
Когда мы применяем к аксиомам определенные правила вывода, например modus ponens или modus tollens, мы получаем новые истинные высказывания, которые в математике называются теоремами. Истинность теорем определяется доказательствами — конечными последовательностями высказываний, первым из которых является аксиома, следующими — либо аксиомы, либо утверждения, полученные из предыдущих по правилам вывода. Теория представляет собой множество аксиом, правил вывода и всех теорем, которые можно доказать с помощью этих правил на основе аксиом.
Логика — раздел математики, занимающийся изучением теорий в абстрактном виде. Поэтому любая система аксиом вызывает у логика интерес не своим содержанием, а тем, соответствует ли она трем свойствам: непротиворечивости, рекурсивной перечислимости и полноте. Первое свойство гарантирует, что теория не содержит противоречий, и это необходимый минимум, позволяющий построить математическое здание. Рекурсивная перечислимость означает, что теория не содержит слишком много аксиом — иначе возникнет ситуация, когда мы не сможем определить, является ли данное доказательство истинным. Наконец, полнота теории означает, что ее аксиом достаточно для вывода всех истинных утверждений в области, к которой она относится. Иными словами, в такой теории можно доказать или опровергнуть любое утверждение формальными методами.
В следующей главе мы рассмотрим ряд парадоксов, которые в конце XIX столетия пошатнули тысячелетние основы математики. К счастью, вскоре были предложены различные решения, для которых кажущейся непротиворечивости аксиом было недостаточно — ее еще нужно было доказать. Об этой формалистской программе мы поговорим в главе 3. Затем мы расскажем об одном из прекраснейших элементов логики — теореме Гёделя о неполноте, которая определяет равновесие между непротиворечивостью, полнотой и рекурсивной перечислимостью.
Глава 2
Парадоксы
Парадокс есть сама страсть мыслителя.
Сёрен Кьеркегор
Хотя родители юного Бертрана Рассела в своем завещании указали, что их младший сын должен воспитываться на тех принципах, во имя которых они сражались во времена викторианской Англии, бабушка со стороны отца не допустила, чтобы этот мальчик с умными глазами стал атеистом. Ребенка передали воспитательницам, которые в классическом духе обучали Бертрана религии и иностранным языкам, благодаря чему юный аристократ в совершенстве овладел французским, немецким и итальянским и несколькими годами позже смог с легкостью путешествовать по всему миру. Однако в те далекие дни юности Бертран думал лишь о замысловатых греческих символах, которые так подходили для того, чтобы выразить его печальные мысли о самом себе и о выпавшей ему доле.
Меланхолию не развеяло даже поступление в академию города Саутгейт для подготовки ко вступительным экзаменам в Кембриджский университет. Рассел надеялся, что общение со сверстниками ему поможет, он представлял себе идиллические картины, в которых он читал великих английских поэтов и обсуждал их творчество с другими учениками или спорил до рассвета о занимавших его философских проблемах. В действительности его ждала группа молодых людей, которые думали только о выпивке и волочились за женщинами, а женщины при каждом удобном случае смеялись над робким впечатлительным юношей. Подобно романтическим героям, Бертран многие вечера провел, гуляя по тропинкам Саутгейта, любуясь закатом и думая о самоубийстве.
Он не сделал этот последний шаг не потому, что ему не хватило духа, а потому, что когда Бертрану было 11 лет, его брат Фрэнк открыл ему врата рая, который стал для него настоящим спасением и о котором еще столько предстояло узнать. Знакомство юного Рассела с райским садом «Начал» Евклида, к которым он обращался всякий раз, когда враждебный мир делался невыносимым, было подобно первой любви. Однако счастье Бертрана было неполным — хотя, по рассказам, греческий мудрец доказал все, каждый, кто открывал страницы этой книги, должен был принять на веру следующее утверждение: «Точка есть то, что не имеет частей».
В 1881 году французский ученый Анри Пуанкаре писал: «Математика — всего лишь история групп». Сегодня мы можем с уверенностью утверждать, что это высказывание справедливо по отношению к разным областям знаний: например, теория групп описывает кристаллы кварца, атомы водорода, гармонию в музыке, системы защиты данных, обеспечивающие безопасность банковских транзакций, и многое другое. Группы повсеместно встречаются не только в математике, но и в природе. Из этой книги читатель узнает об истории сотрудничества (изложенной в форме диалога) двух известных ученых — математика Андре Вейля и антрополога Клода Леви-Стросса.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Наше здоровье зависит от того, что мы едим. Но как не ошибиться в выборе питания, если число предлагаемых «правильных» диет, как утверждают знающие люди, приближается к 30 тысячам? Люди шарахаются от одной диеты к другой, от вегетарианства к мясоедению, от монодиет к раздельному питанию. Каждый диетолог уверяет, что именно его система питания самая действенная: одни исходят из собственного взгляда на потребности нашего организма, другие опираются на религиозные традиции, третьи обращаются к древним источникам, четвертые видят панацею в восточной медицине… Виктор Конышев пытается разобраться во всем этом разнообразии и — не принимая сторону какой-либо диеты — дает читателю множество полезных советов, а попутно рассказывает, какова судьба съеденных нами генов, какую роль сыграло в эволюции голодание, для чего необходимо ощущать вкус пищи, что и как ели наши далекие предки и еще о многом другом…Виктор Конышев — доктор медицинских наук, диетолог, автор ряда книг о питании.Книга изготовлена в соответствии с Федеральным законом от 29 декабря 2010 г.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.
Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.
Можно ли выразить красоту с помощью формул и уравнений? Существует ли в мире единый стандарт прекрасного? Возможно ли измерить гармонию с помощью циркуля и линейки? Математика дает на все эти вопросы утвердительный ответ. Золотое сечение — ключ к пониманию секретов совершенства в природе и искусстве. Именно соблюдение «божественной пропорции» помогает художникам достигать эстетического идеала. Книга «Золотое сечение. Математический язык красоты» открывает серию «Мир математики» — уникальный проект, позволяющий читателю прикоснуться к тайнам этой удивительной науки.
В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.
Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.
Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.