Том 20. Творчество в математике. По каким правилам ведутся игры разума - [32]

Шрифт
Интервал

Метод «кира-кира» представляет собой обычное деление, и он намного проще и понятнее, чем может показаться на первый взгляд. Так, можно убедиться, что его, по сути, без каких-либо изменений можно использовать и при делении чисел.

Ведь как мы делим одно число на другое? Мы начинаем с того, что оцениваем, сколько раз делитель укладывается в делимом. Если числа не делятся друг на друга нацело, образуется остаток. Например, когда мы делим 13 на 5, то говорим, что 5 укладывается в 13 два раза, а остаток от деления равен 13 — 2·5 = 13–10 = 3. Что делать дальше? Нужно разделить остаток 3 на тот же делитель, то есть на 5.

Чтобы упростить вычисления, мы умножаем 3 на 10 и делим 30 на 5. Эти числа делятся друг на друга нацело, результатом деления является 6. Однако этот результат затем нужно разделить на 10 и прибавить полученное число, 0,6, к уже известному частному: 2 + 0,6 = 2,6. Так мы получили окончательный результат деления.

Именно так действуют мастера тораджи — разница заключается лишь в том, что они не выполняют расчеты явно и начинают с визуальной оценки. При делении чисел мы можем действовать точно так же. Допустим, нам нужно разделить 2345 на 3. Будем действовать так:



Ошибка, допущенная на третьем шаге (2345/3 = 780), уже достаточно мала и имеет порядок 0,2 % по сравнению с точным результатом, равным 781,666… Но, хотя этот метод эффективен при делении отрезков на практике, он не вполне применим при делении чисел.


Новая проблема

Некоторое время спустя я вновь общался с одним из мастеров. Я с удивлением увидел в его мастерской необычную геометрическую фигуру — пентаграмму. Спросив мастера, как он построил такую фигуру, я узнал, что построить шестиконечную звезду несложно, пятиконечную — намного труднее.



Мастер указывает на неточно проведенную касательную при построении пентаграммы.


Это и в самом деле так. Мастера вписывали пятиконечную звезду в кольцо, радиус которого определялся визуально. Если результат построения отличался от ожидаемого, мастер исправлял ошибку, но не по методу «кира-кира», а на глаз, не следуя какому-то четко определенному методу, который обязательно приводил бы к нужному решению.

Я задумался над тем, как можно помочь мастерам в решении этой задачи. Было очевидно, что она заключалась в построении пяти равноудаленных точек на окружности, которые затем соединялись попарно, образуя пентаграмму. Следовательно, задача сводилась к построению правильного пятиугольника. Решение, предложенное Евклидом, не подходило по двум причинам. Во-первых, мне казалось бессмысленным чертить пятиугольник на стене дома тораджи с помощью громоздкого метода Евклида, который я и сам не помнил во всех подробностях. Во-вторых, не совсем этично привносить подобный метод в другую культуру. И тут… Эврика! Почему бы не попытаться решить задачу с помощью методов, свойственных культуре, в которой возникла эта задача? Иными словами, можно ли применить метод «кира-кира» для построения правильных многоугольников? Ответ на этот вопрос оказался утвердительным, хотя и не совсем таким, как предположил бы европейский математик.

Нам дана окружность, в которую мы хотим вписать правильный пятиугольник.

Применим метод «кира-кира», отложив на бамбуковой рейке пятую часть длины окружности. Затем отложим на окружности полученной меркой пять отрезков: P>0P>1, Р>1Р>2…., P>4P>5. Если конец последнего отрезка совпадает с точкой P>0, то есть первая и последняя точки совпадают, замыкая цикл, то отмеченные нами пять точек являются вершинами правильного пятиугольника. Хорды, стягивающие пять дуг окружности, соответствующих этим пяти точкам, являются сторонами искомого пятиугольника. Чтобы построить пентаграмму, достаточно соединить точки нужным образом.



Если цикл не замыкается, то есть если Р>5 не совпадает с P>0, это означает, что мы допустили ошибку. Сначала я считал, что эту ошибку следует исправить, найдя ее треть с помощью бамбуковой рейки, а затем прибавить ее к исходной длине отрезка (или вычесть из нее). Но это не помогло улучшить результат. Как же решить задачу? Эврика! Я работал с точками на окружности, но по-прежнему использовал отрезки, в то время как мне нужно было исправить ошибку, допущенную при откладывании дуги. Мне нужно было обратить внимание не на рейку, которой я откладывал хорды, а на дугу окружности, соответствующую величине допущенной ошибки.


Спрямленная окружность

Все ясно: требуется рассмотреть окружность как отрезок. Закрепив один конец рейки во второй точке, отмеченной на окружности, я переместил другой конец рейки туда, где, по моему мнению, должен был находиться конец третьей части дуги, соответствующей допущенной ошибке. В результате я получал новую длину хорды.

Ключ к решению заключался в том, что все отметки на бамбуковой рейке соответствовали хордам дуг окружности и… эврика! Результирующая дуга должна представлять собой сумму дуг. Если складывать хорды подобно отрезкам, это условие не выполняется — результирующая дуга не будет равна сумме двух других. Иными словами, сумма хорд будет равна результирующей хорде, только если мы определим сумму хорд как хорду, равную стороне треугольника, построенного на двух исходных хордах:


Еще от автора Микель Альберти
Том 40. Математическая планета. Путешествие вокруг света

В этой книге пойдет речь об этноматематике, то есть об особенностях методов счисления, присущих разным народам. Хотя история современной математики — часть европейского культурного наследия, опирается она на неакадемические пласты, существовавшие задолго до возникновения современной культуры. Этноматематика охватывает весь перечень математических инструментов, созданных разными народами для решения определенных задач. Конечно, она далека от знакомой нам академической науки и, скорее, опирается на практический опыт, а потому вдвойне интересна.


Рекомендуем почитать
История девяти сюжетов

В книге в занимательной форме рассказывается об истории создания девяти известных литературных произведений: от жизненного факта, положенного в основу, до литературного воплощения.


Как стать популярным автором

Месяцы сочинительства и переделок написанного, мыканья по издательствам, кропотливой работы по продвижению собственной книги — так начиналась карьера бизнес-автора Екатерины Иноземцевой. Спустя три года в школе писательства, основанной Екатериной, обучались 1287 учеников, родилось 2709 статей, 1756 из которых опубликовали крупные СМИ. И главное: каждый из выпускников получил знания о том, как писательство помогает развить личный бренд. В этой книге — опыт автора в создании полезного и интересного контента, взаимодействия со СМИ и поиска вашего кода популярности.


Тайны, догадки, прозрения

В книге рассказывается, как родилась и развивалась физиология высшей нервной деятельности, какие непостижимые прежде тайны были раскрыты познанием за сто с лишним лет существования этой науки. И о том, как в результате проникновения физиологии в духовную, психическую деятельность человека, на стыке физиологии и математики родилась новая наука — кибернетика.


Интернет животных. Новый диалог между человеком и природой

Еще в древности люди познавали мир, наблюдая за животными и анализируя их поведение. Теперь же, в XXI веке, мы можем делать это совсем на другом уровне. Интернет животных – важнейшее достижение человечества – решает сразу несколько проблем. Во-первых, при помощи него мы становимся ближе к животному миру и лучше понимаем братьев наших меньших. Во-вторых, благодаря этой сенсорной сети мы получаем доступ к новым знаниям и открытиям. В книге представлен подробный анализ «фундаментальных перемен, которые сыграют не меньшую роль для человеческого самосознания, чем открытие жизни на других планетах».


Иван Александрович Стебут, 1833–1923

Настоящая книга посвящена жизни и деятельности выдающегося русского агронома И. А. Стебута (1833— 1923). Свыше полувека он занимал наиболее видное место среди деятелей русской агрономии. С именем Стебута связаны последние годы жизни первого сельскохозяйственного высшего учебного заведения в нашей стране — Горыгорецкого земледельческого института (ныне Белорусская сельскохозяйственная академия) и первые тридцать лет жизни Петровской академии (ныне Московская сельскохозяйственная Академия имени К. А. Тимирязева), в которой он возглавлял кафедру земледелия.


Знание-сила, 1998 № 03 (849)

Ежемесячный научно-популярный научно-художественный журнал для молодежи.


Том 16. Обман чувств. Наука о перспективе

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.


Том 13. Абсолютная точность и другие иллюзии. Секреты статистики

Статистика — наука, которая кажется знакомой, ведь мы привыкли слышать упоминания о ней в СМИ. Иногда к ней относятся несерьезно, потому что статистические прогнозы не всегда сбываются. Однако этот факт не отменяет чрезвычайной важности статистических исследований. Цель статистики — получить знания объективным способом на основе наблюдений и анализа реальности. В этой книге затронуты некоторые наиболее интересные аспекты статистики, например, вопросы о том, как провести сбор данных и как представить информацию с помощью графиков.


Секреты числа Пи. Почему неразрешима задача о квадратуре круга

Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.


Дилемма заключенного и доминантные стратегии. Теория игр

Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.