Том 19. Ипотека и уравнения. Математика в экономике - [3]
Майя, жившие в Центральной Америке за много лет до прибытия туда Колумба, также записывали числа в столбцы, а не в строки. Они использовали календарь, в котором месяц состоял из 20 дней, год — из 360 дней, и позиционную систему счисления по основанию 20, а их знаки для обозначения числовых величин были весьма похожи на китайские и индийские.
Майя и их предшественники, ольмеки, совершили множество открытий в математике и астрономии и примерно в 36 году до н. э. дали определение такому понятию, как ноль, или «ничто» (именно этим годом датировано первое письменное упоминание этого числа). Но поскольку 0 в системе счисления майя не мог использоваться в арифметических операциях, это помешало дальнейшему развитию вычислений.
Китайская система счисления: 8 раз по 10 = 80.
Греческая система счисления: (3 + 5) раз по 10 = 8 раз по 10 = 80.
Система счисления майя: 4 раза по 20 = 80.
Египетская система счисления: 8 раз по 10 = 80.
Римская система счисления: 50 + 10 + 10 + 10 = 80.
Система счисления шумеров: 60 + 10+10 = 80.
Одно и то же число, представленное в шести разных системах счисления.
Самыми умелыми математиками древнего мира были индийцы. В своих арифметических расчетах они использовали огромные величины и решали задачи, требующие невероятного воображения (в одной из них, например, упоминаются 1024 дерущиеся обезьяны).
VI веком н. э. датируются два великих открытия индийских математиков: они стали присваивать цифрам разные значения в зависимости от их позиции в записи (одна и та же цифра в зависимости от позиции обозначала единицы, десятки, сотни или тысячи) и начали обозначать особым знаком, 0, число элементов пустого множества (индийцы называли это число «шунья», арабы — «сефир»). Вначале 0 обозначался просто точкой, потом — точкой, расположенной внутри круга, а затем на смену этим обозначениям пришел круг.
Индийские цифры VI века н. э. записывались так же, как и современные: восемьдесят тысяч триста сорок три
= 80 343
= восемь десятков тысяч, ноль тысяч, три сотни, четыре десятка и три единицы
= 8∙10>4 + 0∙10>3 + 3∙10>2 + 4∙10>1 + 3∙10>0.
Греки, подобно китайцам, использовали в качестве цифр буквы, однако их система счисления не была позиционной, что усложняло запись чисел и развитие алгоритмов вычислений. По этой причине древние греки не очень преуспели в науке о числах — арифметике, однако добились огромных успехов в геометрии.
Аристотель (384–322 годы до н. э.) понимал слово «экономия» как управление домашним хозяйством, а науку, которую мы сегодня называем экономикой, называл по-гречески хрематистикой. Он не занимался подробным анализом экономических вопросов и не изучал взаимосвязь между переменными, однако рассмотрел такие понятия, как стоимость, деньги и проценты.
Аристотель рассматривал экономику прежде всего с точки зрения этики и первым выделил различные методы управления предприятием и домашним хозяйством.
Он говорил о потребительской и меновой стоимости, деньгах и богатстве и проанализировал две функции денег: как меры стоимости и как средства обращения товаров. Отрицательное отношение Аристотеля к ростовщичеству сохранилось до Нового времени и легло в основу доктрины католической церкви. Ученый рассуждал и на другие экономические темы, например о частной собственности и рабстве, и его идеи оказали большое влияние на исламскую этику.
Римляне не внесли в греческую систему счисления существенных изменений.
Они использовали для обозначения чисел буквы М, D, C, L, X, V и I, а большие числа обозначали горизонтальной чертой над этими буквами. Естественно, римлян ожидали те же трудности, что и греков: нетрудно представить, насколько сложно записать в римской системе счисления действительно большое число, например миллион, или выполнить с числами различные действия.
Именно поэтому когда в VIII веке арабы через Андалусию принесли в Европу индийскую систему счисления, все, кто занимался расчетами, сразу же начали использовать индийские цифры, а римская система счисления окончательно отошла в прошлое.
* * *
ОСНОВАНИЯ СИСТЕМ СЧИСЛЕНИЯ И ЕДИНИЦЫ ИЗМЕРЕНИЯ
Сегодня почти не верится, что раньше люди вели все подсчеты только на пальцах рук, однако именно на этом основана современная система счисления, которую мы используем каждый день — позиционная десятичная. Однако эта система не универсальна — ее не используют самые быстрые и точные устройства для вычислений — компьютеры. Какие же системы счисления применялись в прошлом и какие — используются сейчас?
Десятичная система счисления
— Десять цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
— Выражение: 72 603>10 = 7∙10>4 + 2∙10>3 + 6∙10>2 + 0∙10>1 + 3∙10>0.
Используется в повседневной жизни с древних времен.
Шестнадцатеричная система
— 16 цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, А, В, С, D, Е, F.
— Выражение: 72 603>10 = 11В9В>16 = 1∙16>4 + 1∙16>3 + 11∙16>2 + 9∙16>1 + 11∙16>0.
— Используется в электронике.
Двоичная система
— Две цифры: 0, 1.
— Выражение: 72 603>10 = 10001101110011011>2 = 1∙216 + 0∙215 + 0∙214 + 0∙213 + 1∙21>2 + 1∙ 2>11 + 0∙2>10 + 1∙2>9 + 1∙2>8 + 1∙2>7 + 0∙2>6 + 0∙2>5 + 1∙2>4 + 1∙2>3 + 0∙2>2 + 1∙2>1 + 1∙2>0.
— Используется в компьютерной технике.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.