Том 18. Открытие без границ. Бесконечность в математике - [30]
Кантор также сформулировал очень важное понятие счетного множества. По определению, множество А называется счетным, если можно установить взаимно однозначное соответствие между А и подмножеством
Когда мы заявляем, что места в зале кинотеатра пронумерованы, мы говорим о взаимно однозначном соответствии между подмножеством натуральных чисел и множеством кресел и сопоставляем каждому креслу число.
Мы уже показали, что множество целых чисел является счетным. Далее Кантор получил поистине удивительный результат: множество рациональных чисел
Схема, придуманная Кантором, такова. Нужно построить таблицу рациональных чисел (напомним, что речь идет о дробях) следующим образом: в первой строке записываются дроби, числитель которых равен 1, во второй — дроби, числитель которых равен 2, в третьей — 3 и т. д. Вычеркнем из каждой строки повторяющиеся дроби. Например, 2/2 — это то же самое, что 1/1 или 3/3, 2/4 — то же, что и 1/2, и т. д. Построив таблицу, обойдем все числа в порядке, указанном стрелками, начиная с 1/1. Мы обойдем все рациональные числа ровно один раз. Таким образом, взаимно однозначное соответствие между натуральными и рациональными числами устанавливается следующим образом:
1 —> 1/1
2 —> 1/2
3 —> 2/1
4 —> 3/1
5 —> 1/3
…
Самое удивительное в том, что мы установили взаимно однозначное соответствие между двумя множествами, одно из которых является дискретным (множество натуральных чисел), а другое — плотным (множество рациональных чисел).
Здесь бесконечность начинает понемногу приподнимать завесу тайны над своими удивительными загадками. Интуиция подсказывает, что счетными могут быть только дискретные множества, и тот факт, что плотное множество
* * *
МЫСЛИТЬ — ЭТО БОЛЬШЕ, ЧЕМ ГОВОРИТЬ
Согласно теории множеств Кантора, множество всех возможных слов, как произнесенных, так и записанных на бумаге, является счетным. Если учитывать, что множество знаков (букв, символов и т. д.) в языке конечно, то очевидно, что на его основе можно сформировать счетное множество. Другое дело — множество вещей, о которых мы можем подумать. Оно, очевидно, не является счетным. Мы можем представить, например, множество окружностей на плоскости, имеющее мощность континуум. Таким образом, все, что мы можем сказать, поддается упорядочению, а все, о чем мы можем подумать, не поддается или поддается лишь частично. Следовательно, можно упорядочить лишь часть наших мыслей, а большинство из них принадлежит к миру хаоса.
Буквы алфавита образуют ограниченное и, следовательно, счетное множество.
* * *
По этой причине с открытым Кантором понятием счетности оказалось тесно связано понятие непрерывности. Неизбежно возник вопрос: если расширить множество рациональных чисел иррациональными, будет ли полученное множество счетным?
Иными словами, можно ли говорить, что М — счетное множество?
Нет, это не так, и Кантор это доказал с помощью метода, схожего с тем, который он использовал при доказательстве счетности множества
Ты всем известен, но никем не охвачен, ибо умеренное кажется большим, большое — бесконечным и еще раз бесконечным.
«Герой». Бальтазар Грасиан (1601–1658)
Кантор знал, что ни вещественная прямая, ни какой-либо из ее отрезков не являются счетными. Далее он совершил гигантский шаг и встретился с бесконечностью лицом к лицу.
Напомним, что для того чтобы получить множество вещественных чисел, необходимо добавить к множеству рациональных чисел множество иррациональных чисел, которые нельзя представить в виде частного двух целых. Множество вещественных чисел также является бесконечным и плотным. Однако оно не является счетным, в отличие от двух предыдущих, то есть этому множеству никоим образом нельзя поставить в соответствие ряд натуральных чисел 1, 2, 3, 4, 5, …
Поиск простых чисел — одна из самых парадоксальных проблем математики. Ученые пытались решить ее на протяжении нескольких тысячелетий, но, обрастая новыми версиями и гипотезами, эта загадка по-прежнему остается неразгаданной. Появление простых чисел не подчинено какой-либо системе: они возникают в ряду натуральных чисел самопроизвольно, игнорируя все попытки математиков выявить закономерности в их последовательности. Эта книга позволит читателю проследить эволюцию научных представлений с древнейших времен до наших дней и познакомит с самыми любопытными теориями поиска простых чисел.
Расшифровка генетического кода, зашита от инфекционных болезней и патент на совершенную фиксацию азота, проникновение в тайну злокачественного роста и извлечение полезных ископаемых из морских вод — неисчислимы сферы познания и практики, где изучение микроорганизма помогает добиваться невиданных и неслыханных результатов… О достижениях микробиологии, о завтрашнем дне этой науки рассказывает академик АМН СССР О. Бароян.
Лишний вес, состояние хронического стресса, переедание, недовольство собственной внешностью – это наиболее распространенные жалобы 80 % современных женщин. Что делать, если косметика и экстремальные диеты не помогают, а постоянное ощущение нехватки сил не дает жить полноценной жизнью? Как замедлить метаболизм на этапе похудения и удержать массу тела? Как предотвратить переход преддиабета в диабет? Как не дать разрядиться нашей «батарейке» – щитовидной железе? Можно ли победить старение? Какие анализы совершенно бесполезны? Как подготовиться к визиту к эндокринологу? В книге Марины Берковской есть не только ответы на эти вопросы, но и четкие инструкции по управлению гормональным фоном.
Можно ли умереть от разбитого сердца? Действительно ли горе и невзгоды способны фатально повлиять на самый жизненно важный орган нашего организма? Возможно, мы совсем не случайно воспринимаем сердце как символ чувств. Дело в том, что эмоции действительно оказывают на сердце огромное влияние. Но насколько глубока связь между драматичным расставанием с партнером и сердечными заболеваниями? Доктор Никки Стамп исследует в своей книге так называемый «синдром разбитого сердца» – а также делится уникальным опытом, который она приобрела во время своей работы.
Каждый день в мире совершаются открытия и принимаются решения, влияющие на наше будущее. Но может ли кто-то предвидеть, что ждет человечество? Возможна ли телепортация (спойлер: да), как изменится климат, каким будет транспорт и что получится, если искусственный интеллект возьмет над нами верх? Станут ли люди счастливее с помощью таблеток и здоровее благодаря лечению с учетом индивидуальной ДНК? Каких чудес техники нам ждать? Каких революций в быту? В этой книге ведущие мировые специалисты во главе с Джимом Аль-Халили, пользуясь знаниями передовой науки, дают читателю представление о том, что его ждет впереди.
Наше поколение стало свидетелем необычайной победы человеческого разума — начала проникновения в космос. Перед молодежью открываются увлекательные, полные заманчивости перспективы межпланетных путешествий и открытий. Но есть еще и на нашей «обжитой» планете Земля много неизученных «белых пятен», среди них почти неизвестный на всю его глубину Мировой океан с его подводными горами и впадинами, со своим растительным и животным миром, со своими физическими законами. В изучении его большую пользу приносит гидроакустика — сравнительно молодая наука, имеющая большое будущее. Эта наука имеет большое прикладное значение.