Том 18. Открытие без границ. Бесконечность в математике - [32]

Шрифт
Интервал

, возведенным в некоторую степень и умноженным на некие числа (коэффициенты), а в правой части записан ноль. Решить уравнение означает найти такое значение х, при котором уравнение обращается в верное равенство. Например, в уравнении

х 2 = 0

коэффициенты равны 1 и — 2, а решением является х = 2.

Иррациональное число, например √2, является результатом решения уравнения вида

х>2 2 = 0.

По определению, число х является алгебраическим, если оно выступает корнем (решением) алгебраического уравнения с целыми коэффициентами. Проясним некоторые понятия, чтобы сделать это определение более понятным. Алгебраическое уравнение представляет собой многочлен, приравненный к нулю, например

Зх>25х 1 = 0,

где 3, 5 и —1 — коэффициенты. Выражение

√Зх>5 >2 = 0

также является уравнением, но его первый коэффициент не является целым числом, следовательно, это уравнение нельзя назвать алгебраическим.

Число 3 является алгебраическим, так как оно выступает решением уравнения

х 3 = 0.

Очевидно, что любое рациональное число является алгебраическим, так как всегда можно записать алгебраическое уравнение, решением которого будет это число.

Как мы уже показали, √2 является решением уравнения х>2 2 0, и, следовательно, это также алгебраическое число.

Если число не является алгебраическим, его называют трансцендентным. Этот термин, введенный Эйлером, происходит от латинского transcendere — «превосходить» и означает, что вычисление таких чисел в некотором роде выходит за рамки привычных математических операций. Доказать трансцендентность числа порой очень и очень непросто. Французский математик Жозеф Лиувилль (1809–1882) доказал существование трансцендентных чисел и открыл метод, позволяющий получить некоторые из них. Первым числом, которое удостоилось чести быть помещенным в список трансцендентных, стало (число Лиувилля), определение которого слишком сложно, чтобы приводить его здесь. Записывается оно следующим образом:

L = 0,1100010000000000000000010000…

В 1873 году французский математик Шарль Эрмит (1822–1901), ученик Лиувилля, доказал, что е (основание натурального логарифма, приближенное значение которого равно 2,718281828459043235360287471352…) не является алгебраическим числом. Получить это доказательство было непросто — оно не далось самому Эйлеру.

Одно из самых известных чисел в истории математики — это число π («пи»), равное отношению длины окружности к ее диаметру. Доказательство трансцендентности е оказалось столь сложным, что Эрмит не решился взяться за аналогичное доказательство для числа π, о чем написал Карлу Вильгельму Борхардту (1817–1880): «Я не осмелился приступить к доказательству трансцендентности числа π. Если кто-то другой попытается это сделать, не будет человека счастливее меня, но поверьте мне, любезный друг, что это доказательство потребует немалых усилий».

Трансцендентность числа π была доказана Линдеманом лишь несколько лет спустя, в 1882 году. Это открытие стало важной вехой в истории математики, так как означало невозможность решения задачи о квадратуре круга.

Сегодня доказано, что трансцендентными являются числа е, π, е, 2>√2, sin(1), ln2, lп3/ln2 и некоторые другие, однако до сих пор остается открытым вопрос о трансцендентности таких чисел, как 

. Известно, например, что по меньшей мере одно из двух чисел (возможно, оба сразу) 
 является трансцендентным, но доказать трансцендентность каждого их них по отдельности до сих пор не удалось. Трансцендентные числа — редкие создания, обнаружить их непросто. Это наводит на мысль о том, что таких чисел немного, но в действительности это совершенно не так: их много, очень много, бесконечно много и даже больше.




Шарль Эрмит на фотографии 1887 года. Этот французский математик доказал, что число е не является алгебраическим.


Бесконечное множество вещественных чисел содержит рациональные числа, которые являются алгебраическими, и иррациональные числа, часть которых является трансцендентными. Однако трансцендентных чисел больше, чем алгебраических.

Кантор, обнаружив подлинную гениальность (полученные результаты изумили его самого), сформулировал простое доказательство того, что существует бесконечно много трансцендентных чисел. С одной стороны, известно, что множество вещественных чисел не является счетным. С другой стороны, множество алгебраических чисел является счетным. Из этих двух утверждений следует, что существуют числа, которые не являются алгебраическими. Более того, Кантор доказал, что множество этих чисел не является счетным.

Вывод: множество вещественных чисел так велико именно благодаря трансцендентным числам.


Трансфинитные числа

Арифметика трансфинитных чисел отличается от арифметики конечных чисел.

Георг Кантор


Как мы показали в предыдущем разделе, если дано множество А = {а, Ь, с, d}, можно образовать ряд его подмножеств

{а}, {Ь}, {с}, {d}, {а, b), {а, с}, {a, d), {Ь, с}, {Ь, d), {с, d), {а, Ь, с}, {а, Ь, d}, {а, с, d}, {Ь, с, d},

которые будут так называемыми собственными подмножествами А. Кроме них, подмножествами А также являются само множество А и пустое множество, обозначаемое символом 0 и не содержащее никаких элементов. Считается, что пустое множество является подмножеством любого множества, и эти два множества (исходное и пустое) считаются несобственными подмножествами. Добавив к вышеприведенному списку собственных подмножеств эти два множества, мы получим полный перечень всех подмножеств


Еще от автора Энрике Грасиан
Том 3. Простые числа. Долгая  дорога к бесконечности

Поиск простых чисел — одна из самых парадоксальных проблем математики. Ученые пытались решить ее на протяжении нескольких тысячелетий, но, обрастая новыми версиями и гипотезами, эта загадка по-прежнему остается неразгаданной. Появление простых чисел не подчинено какой-либо системе: они возникают в ряду натуральных чисел самопроизвольно, игнорируя все попытки математиков выявить закономерности в их последовательности. Эта книга позволит читателю проследить эволюцию научных представлений с древнейших времен до наших дней и познакомит с самыми любопытными теориями поиска простых чисел.


Рекомендуем почитать
Всё о рождении ребёнка

Книга Алисы Макмахон станет вашим гидом на дороге длиной в девять месяцев. Автор обеспечит вас всей необходимой информацией, поможет прогнать ненужные опасения и даст спокойное понимание того, что происходит в момент появления на свет новой жизни, а также ответит на многие вопросы, которые неизбежно возникнут до и после родов. Для широкого круга читателей и специалистов.


Укус эволюции. Откуда у современного человека неправильный прикус, кривые зубы и другие деформации челюсти

Огромное количество детей и взрослых по всему миру имеют проблемы с прикусом, и эти проблемы носят не только эстетический характер, они могут стать причиной серьезных заболеваний. В этой книге врач-стоматолог Сандра Кан, и Пол Р. Эрлих, известный биолог, изучают причины и последствия неправильного развития челюсти у современного человека, а также представляют новый взгляд на ортодонтию и лечение зубов. По их мнению, из-за недостаточного развития челюсти могут возникать апноэ, затруднение дыхания, болезни сердца, депрессия и другие опасные состояния.


Смерть и оживление

Научно-популярная брошюра для крестьян, 1926 г.


ГОРМОНичное тело

Лишний вес, состояние хронического стресса, переедание, недовольство собственной внешностью – это наиболее распространенные жалобы 80 % современных женщин. Что делать, если косметика и экстремальные диеты не помогают, а постоянное ощущение нехватки сил не дает жить полноценной жизнью? Как замедлить метаболизм на этапе похудения и удержать массу тела? Как предотвратить переход преддиабета в диабет? Как не дать разрядиться нашей «батарейке» – щитовидной железе? Можно ли победить старение? Какие анализы совершенно бесполезны? Как подготовиться к визиту к эндокринологу? В книге Марины Берковской есть не только ответы на эти вопросы, но и четкие инструкции по управлению гормональным фоном.


(Не) умереть от разбитого сердца

Можно ли умереть от разбитого сердца? Действительно ли горе и невзгоды способны фатально повлиять на самый жизненно важный орган нашего организма? Возможно, мы совсем не случайно воспринимаем сердце как символ чувств. Дело в том, что эмоции действительно оказывают на сердце огромное влияние. Но насколько глубока связь между драматичным расставанием с партнером и сердечными заболеваниями? Доктор Никки Стамп исследует в своей книге так называемый «синдром разбитого сердца» – а также делится уникальным опытом, который она приобрела во время своей работы.


На что похоже будущее? Даже ученые не могут предсказать… или могут?

Каждый день в мире совершаются открытия и принимаются решения, влияющие на наше будущее. Но может ли кто-то предвидеть, что ждет человечество? Возможна ли телепортация (спойлер: да), как изменится климат, каким будет транспорт и что получится, если искусственный интеллект возьмет над нами верх? Станут ли люди счастливее с помощью таблеток и здоровее благодаря лечению с учетом индивидуальной ДНК? Каких чудес техники нам ждать? Каких революций в быту? В этой книге ведущие мировые специалисты во главе с Джимом Аль-Халили, пользуясь знаниями передовой науки, дают читателю представление о том, что его ждет впереди.