Том 14. Истина в пределе. Анализ бесконечно малых - [3]
при h = 0, то есть когда числа а + h и а совпадают. Это значение мы назовем производной функции f в точке а. Будем обозначать его f’(а). Это обозначение ввел французский математик Жозеф Луи Лагранж (1736—1813) (см. главу 6). Как можно видеть, значение этой дроби равно 0/0, то есть оно не определено.
Однако это лишь кажущаяся неопределенность, поскольку, как показано в предыдущей таблице, для наших функций s(t) = √t и v(t) = t>2при малых значениях h, отличных от нуля, обе дроби
определены и равны соответственно 0,5 для функции s(t) = √t и 2 — для функции v(t) = t>2. Далее мы покажем, что эти значения действительно соответствуют значениям производных обеих функций в точке 1, то есть s’(l) = 0,5 и v’(l) = 2.
Деление ноля на ноль, возникающее при определении производной, представляло трудность для ученых XVII века и их предшественников всякий раз, когда они пытались рассчитать, например, угол наклона касательной к кривой или мгновенную скорость движения тела, зная пройденный им путь.
Бесконечность, основа анализа бесконечно малых, скрывается именно в этой операции деления ноля на ноль. Как мы только что сказали, нас интересует значение дроби
при h = 0, когда и числитель, и знаменатель обращаются в ноль. Подобные величины, равные нулю, отношение которых необходимо найти, математики XVII века назвали бесконечно малыми.
Анализ бесконечно малых, созданный Ньютоном и Лейбницем и усовершенствованный Леонардом Эйлером (1707—1783) и другими математиками XVIII века, можно назвать искусством манипулирования бесконечно малыми величинами. Как рассказывается в следующих главах, парадоксально, но ни один из этих гениальных математиков не определил сколько-нибудь точно понятие бесконечно малой величины, которое легло в основу математического анализа.
Ньютону и Лейбницу удалось завершить работу множества их коллег — математиков XVII века и создать анализ бесконечно малых, одним из разделов которого является дифференциальное исчисление. Ньютон и Лейбниц определили простые правила, позволявшие устранять неопределенность, которая заключается в делении ноля на ноль и возникает всякий раз, когда мы хотим вычислить производную функции. Это были правила вычисления производных элементарных функций, в частности степенной:
тригонометрических функций:
логарифмов:
показательных функций:
а также правила вычисления производной для основных операции с функциями, в частности суммы:
произведения:
деления:
и для сложных функций:
Гордиевым узлом анализа бесконечно малых на протяжении XVII, XVIII и начала XIX века оставалось четкое определение того, как следует понимать значение дроби
при h = 0. Этот гордиев узел разрубил французский математик Огюстен Луи Коши (1789—1857), применив понятие предела, которое он сам же и определил более или менее точно и которое затем улучшил немецкий математик Карл Вейерштрасс (1815—1897). Об этом рассказывается в главе 6.
Так как мгновенная скорость, с которой движется тело, является производной, то трудности при делении ноля на ноль препятствовали развитию физики, пока Ньютон не решил эту проблему, создав анализ бесконечно малых. До конца XVII века, когда был сформирован анализ бесконечно малых, ученые могли изучать только простейшие виды движения: равномерное движение, при котором пройденный путь пропорционален затраченному времени, следовательно, скорость постоянна, а ускорение отсутствует, а также равноускоренное движение, при котором пройденный путь пропорционален квадрату времени, скорость пропорциональна времени, а ускорение постоянно. Для изучения последнего вида движения, примером которого является падение тела под действием силы тяжести, потребовался гений Галилея, который понял его суть за несколько десятков лет до того, как с помощью анализа бесконечно малых было найдено тривиальное решение этой задачи.
Проиллюстрируем это на примере. Рассмотрим, как и в прошлых примерах, движущееся тело, которое в момент времени t прошло расстояние в s(t) = √t. Время будем измерять в секундах, расстояние — в метрах. Вычислить среднюю скорость движения тела несложно: например, в период времени с первой по четвертую секунду средняя скорость будет равна отношению пройденного пути и затраченного времени:
Но что, если нас интересует не средняя скорость, а мгновенная скорость в конкретный момент времени? Чтобы упростить рассуждения, допустим, что мы хотим вычислить мгновенную скорость в тот момент, когда проходит ровно одна секунда от начала движения. Выберем приращение времени h и вычислим среднюю скорость в интервале времени от 1 секунды до (1 +
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Поэзия — недоказуемая истина. Математика же, напротив, состоит из доказательств. И все-таки у этих двух сфер есть что-то общее. Ученый Анри Пуанкаре писал: «Думать, что математика затрагивает лишь интеллект, означало бы забыть о красоте математики, элегантности геометрии, которые прекрасны в самом полном смысле этого слова». Математик находится посередине между наукой и искусством, и это подтверждает неизбежную связь между самой абстрактной из наук и человеческими эмоциями. Цель этой книги — на нескольких ярких примерах показать красоту математики.
Слово «паразит» ни у кого не вызывает положительных эмоций. Паразитами называют тех, кто живет за чужой счет, — идет ли речь о людях или патогенных организмах. Тем не менее, само существование паразитов будоражит наше воображение: нас поражает их способность адаптации к меняющимся внешним условиям, их сложный жизненный цикл, их «модус операнди», не имеющий аналогов в животном мире. Эта книга максимально доступным языком, с использованием множества примеров рассказывает о том, чем занимается наука паразитология.
Наш прекрасный мир и его чудесная природа обрели свой вид только благодаря грибам, без которых немыслима ни одна экосистема. Без них не было бы ни наших лесов, ни нашего климата, да и, возможно, самой жизни. Грибы вездесущи, и, если использовать их правильно, они могут помочь нам в совершенно неожиданных областях. Грибы – партнеры, грибы – мастера утилизации отходов, грибы – чудо-лекарство, грибы – источник страсти… Известный австрийский биолог и специалист по охране природы, автор более 20 книг Роберт Хофрихтер, обобщая научные данные и собственный профессиональный и жизненный опыт, расскажет в этой книге о многом, чего мы до сих пор не знали о грибах.
Книга рассказывает о прошлом, настоящем и будущем самых, быть может, загадочных созданий на Земле. О том, как выглядели древнейшие, ранние киты, как эти обитавшие на суше животные миллионы лет назад перешли к водному образу жизни, мы узнаем по окаменелостям. Поиск ископаемых костей китов и работа по анатомическому описанию существующих видов приводила автора в самые разные точки планеты: от пустыни Атакама в Чили, где обнаружено самое большое в мире кладбище древних китов — Серро-Баллена, до китобойной станции в Исландии, от арктических до антарктических морей. Киты по-прежнему остаются загадочными созданиями.
Птичьи яйца – важная составляющая нашей культуры, символ плодовитости, неотъемлемый атрибут религиозных верований и мифологических представлений. Издревле за яйцами охотились коллекционеры и зачастую рисковали жизнью, взбираясь по скалистым склонам в поисках уникальных экземпляров. Казалось бы, яйцо устроено очень просто – но эта простота лишь кажущаяся. Один из ведущих орнитологов современности, известный британский популяризатор науки, обладатель множества наград за исследования в области поведенческой экологии и орнитологии, Тим Беркхед делится своими уникальными знаниями и раскрывает множество тайн этого настоящего чуда природы.
Как происходит дыхание? Почему нам порой не хватает воздуха и какое отношение имеет к этому маленькая Русалочка? Как наши эмоции влияют на дыхание? Почему мы кашляем, но не чувствуем боли в дыхательных путях? Может ли вырасти новое легкое? Как самый большой орган нашего тела защищается от микробов и вредных веществ. И самое главное: что мы можем предпринять, чтобы этот чудесный орган сохранял свою работоспособность всю жизнь? Обо всем этом увлекательно и захватывающе повествует специалист по легким Кай-Михаэль Бе. Для широкого круга читателей.
Книга основателя Игнобелевской (Шнобелевской) премии — сборник эссе о самых разных исследованиях вполне почтенных ученых. Только вот предмет этих исследований заставляет читателей сначала рассмеяться, а потом задуматься о весьма серьезных вещах. Почему чаще всего крадут книги по этике? Как найти оптимальный способ нарезки ветчины с помощью математики? Отчего танцоры в Вегасе получают большие чаевые в определенные месяцы? И какое ухо лучше распознает ложь — правое или левое? Абрахамс рассказывает о подобных довольно странных исследованиях в области биологии, физики, математики и других наук с большим юмором, иронией и — глубоким знанием человеческой природы.
Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.
Статистика — наука, которая кажется знакомой, ведь мы привыкли слышать упоминания о ней в СМИ. Иногда к ней относятся несерьезно, потому что статистические прогнозы не всегда сбываются. Однако этот факт не отменяет чрезвычайной важности статистических исследований. Цель статистики — получить знания объективным способом на основе наблюдений и анализа реальности. В этой книге затронуты некоторые наиболее интересные аспекты статистики, например, вопросы о том, как провести сбор данных и как представить информацию с помощью графиков.
Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.
Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.