Теория смысла Готлоба Фреге - [13]
Так как объемы выступают в качестве предметов, то они подпадают под это правило. Это значит, что если про некоторый класс А что-то сказано, то это можно повторить и про класс В в случае, если А совпадает с В. Но «сказать» про класс А можно не только при помощи оборота «класс А», но также употребив понятие того свойства, которое определяет данный класс. Про класс людей можно нечто высказать, не только употребив выражение «человечество», но и прибегнув к понятию «человек» (т. е. к понятию о свойстве быть человеком). Известно, что один и тот же класс может определяться различными свойствами. Из правила Лейбница следует, что понятия о свойствах и отношениях, определяющие один и тот же класс, т. е. равнообъемные понятия, можно заменить друг другом. Например, понятия о прямой, соединяющей вершину равностороннего треугольника с серединой противоположной стороны, и о прямой, делящей угол равностороннего треугольника пополам, равнообъемны. Поэтому, по правилу Лейбница, их можно заменить друг другом в любом предложении. Так, из истинного предложения (17) «Прямые, соединяющие вершины равностороннего треугольника с серединами противоположных сторон, пересекаются в одной точке» получается истинное предложение
(18) «Прямые, делящие пополам углы равностороннего треугольника, пересекаются в одной точке».
Равнообъемные понятия не отличаются друг от друга именно в том смысле, что они взаимозаменяемы в любом предложении рассматриваемой науки>[48]. В этом – и только этом! – смысле понятия, имеющие один и тот же объем, отождествляются; в этом – и только в этом! – смысле можно сказать, что понятия, которым соответствует один и тот же класс предметов, можно отождествить с этим классом>[49].
Нетрудно, однако, обнаружить контексты, в которых замена равнообъемных понятий друг другом из истины будет порождать ложь. Так, если справедливо, что
(19) «NN знает, что прямые, соединяющие вершины равностороннего треугольника с серединами противоположных сторон, пересекаются в одной точке»,
то из этого вовсе не следует истинность предложения:
(20) «NN знает, что прямые, делящие углы равностороннего треугольника пополам, пересекаются в одной точке». Действительно, если предложение (19) верно, это отнюдь не гарантирует справедливости предложения (20), ибо NN. зная то, о чем говорится в первом предложении, вполне может не знать того, о чем говорится во втором. Мы видим, таким образом, что существуют особые – по выражению Квайна [27], «мутные» -контексты, в которых правило Лейбница нарушается.
Фреге сформулировал в некотором смысле более общий принцип, чем правило Лейбница, ― правило замены равнозначным. Правило Фреге касается замены выражений, входящих в состав сложных имен. Введение понятия истинностного значения, а также представления о предложениях, как об именах истины или лжи, привело к тому, что правило Лейбница оказалось частным случаем правила Фреге. Правило Фреге для случаев, когда заменяемое имя входит в состав предложения, совпадает с правилом Лейбница.
Мы знаем, что по теории Фреге правило замены равнозначным действует во всех контекстах без изъятия; для обнаружения этого действия надо только правильно логически проанализировать, истолковать соответствующее выражение. Действует это правило и в том «мутном» – или, как иначе говорят, «интенсиональном», «необъемном» – контексте, который мы рассматривали выше, так сказать, «проясняя» его.
В (19) и (20) мы имели косвенную речь, а выражения в косвенной речи имеют косвенное значение. Поэтому мы не имеем права рассматривать выражения
10)«прямые, соединяющие вершины равностороннего треугольника с серединами противоположных сторон›
11)«прямые, делящие пополам углы равностороннего треугольника»
как равнозначные, так как в данном контексте они обозначают не объемы понятий, а их смыслы, т. е. то, что можно назвать свойствами в необъемном смысле>[50]. Фрегевский принцип замены применим и к свойствам в необъемном смысле. Выражение 10) в составе предложения (19) может быть заменено выражением, обозначающим то же свойство в необъемном смысле, например, выражением «медианы равностороннего треугольника» (предполагается, что медиана, по определению, есть прямая, соединяющая вершину треугольника с серединой его противоположной стороны).
>**>*
Мы говорили, что понятие смысла Фреге ввел для того, чтобы объяснить предложения, содержащие равенства. Но роль фрегевского понятия смысла выходит за рамки этой задачи. Фактически роль смысла в его теории состоит в том, чтобы придать объемный характер не только логическому исчислению, которое Фреге строит специально для обоснования арифметики, но также и обычному мышлению и обычному языку, поскольку последний используется для целей логики. Теория смысла Фреге охватывает и обычные, и формализованные языки.
Рассматривая обычный язык, Фреге встретился с «мутными» контекстами, в которых как будто нарушался принцип объемности и в которых выражения, так сказать, «обнаруживали», что они имеют смысл. Наиболее ярким примером такого рода контекстов была косвенная речь. Это была реальная трудность,
Бирюков Борис Владимирович — доктор философских наук, профессор, руководитель Межвузовского Центра изучения проблем чтения (при МГЛУ), вице-президент Русской Ассоциации Чтения, отвечающий за её научную деятельность.Сфера научных интересов: философская логика и ее история, история отечественной науки, философия математики, проблемы оснований математики. Автор и научный редактор более пятисот научных трудов, среди них книги, входящие в золотой фонд отечественной историко-научной и логической мысли. Является главным научным редактором и вдохновителем научного сборника, издаваемого Русской Ассоциацией Чтения — «Homo legens» («Человек читающий»).
Бирюков Борис Владимирович — доктор философских наук, профессор, руководитель Межвузовского Центра изучения проблем чтения (при МГЛУ), вице-президент Русской Ассоциации Чтения, отвечающий за её научную деятельность.Сфера научных интересов: философская логика и её история, история отечественной науки, философия математики, проблемы оснований математики. Автор и научный редактор более пятисот научных трудов, среди них книги, входящие в золотой фонд отечественной историко-научной и логической мысли. Является главным научным редактором и вдохновителем научного сборника, издаваемого РАЧ — «Homo Legens» («Человек читающий»).Статья «„Цель вполне практическая.
Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.
Монография посвящена исследованию становления онтологической парадигмы трансгрессии в истории европейской и русской философии. Основное внимание в книге сосредоточено на учениях Г. В. Ф. Гегеля и Ф. Ницше как на основных источниках формирования нового типа философского мышления.Монография адресована философам, аспирантам, студентам и всем интересующимся проблемами современной онтологии.
Книга выдающегося польского логика и философа Яна Лукасевича (1878-1956), опубликованная в 1910 г., уже к концу XX века привлекла к себе настолько большое внимание, что ее начали переводить на многие европейские языки. Теперь пришла очередь русского издания. В этой книге впервые в мире подвергнут обстоятельной критике принцип противоречия, защищаемый Аристотелем в «Метафизике». В данное издание включены четыре статьи Лукасевича и среди них новый перевод знаменитой статьи «О детерминизме». Книга также снабжена биографией Яна Лукасевича и вступительной статьей, показывающей мучительную внутреннюю борьбу Лукасевича в связи с предлагаемой им революцией в логике.
М.Н. Эпштейн – известный филолог и философ, профессор теории культуры (университет Эмори, США). Эта книга – итог его многолетней междисциплинарной работы, в том числе как руководителя Центра гуманитарных инноваций (Даремский университет, Великобритания). Задача книги – наметить выход из кризиса гуманитарных наук, преодолеть их изоляцию в современном обществе, интегрировать в духовное и научно-техническое развитие человечества. В книге рассматриваются пути гуманитарного изобретательства, научного воображения, творческих инноваций.
Книга – дополненное и переработанное издание «Эстетической эпистемологии», опубликованной в 2015 году издательством Palmarium Academic Publishing (Saarbrücken) и Издательским домом «Академия» (Москва). В работе анализируются подходы к построению эстетической теории познания, проблематика соотношения эстетического и познавательного отношения к миру, рассматривается нестираемая данность эстетического в жизни познания, раскрывается, как эстетическое свойство познающего разума проявляется в кибернетике сознания и искусственного интеллекта.
Автор книги профессор Георг Менде – один из видных философов Германской Демократической Республики. «Путь Карла Маркса от революционного демократа к коммунисту» – исследование первого периода идейного развития К. Маркса (1837 – 1844 гг.).Г. Менде в своем небольшом, но ценном труде широко анализирует многие документы, раскрывающие становление К. Маркса как коммуниста, теоретика и вождя революционно-освободительного движения пролетариата.
Книга будет интересна всем, кто неравнодушен к мнению больших учёных о ценности Знания, о путях его расширения и качествах, необходимых первопроходцам науки. Но в первую очередь она адресована старшей школе для обучения искусству мышления на конкретных примерах. Эти примеры представляют собой адаптированные фрагменты из трудов, писем, дневниковых записей, публицистических статей учёных-классиков и учёных нашего времени, подобранные тематически. Прилагаются Словарь и иллюстрированный Указатель имён, с краткими сведениями о характерном в деятельности и личности всех упоминаемых учёных.