Теория катастроф - [10]

Шрифт
Интервал

Рис. 31. Типичные особенности границ трехмерных областей устойчивости

Заметим, что область устойчивости во всех случаях располагается "углами наружу", вклиниваясь "зияющими вершинами" в область неустойчивости. Таким образом, для системы, принадлежащей особой части границы устойчивости, при малом изменении параметров более вероятно попадание в область неустойчивости, чем в область устойчивости. Это проявление общего принципа, согласно которому все хорошее (например, устойчивость) более хрупко, чем плохое.

По-видимому, все хорошие объекты удовлетворяют нескольким требованиям одновременно, плохим же считается объект, обладающий хотя бы одним из ряда недостатков.

В случае четырех параметров к перечисленным выше особенностям границы добавляются еще две.

При увеличении числа параметров число типов особенностей границы устойчивости семейства общего положения быстро растет, однако, как доказал Л. В. Левантовский, оно остается конечным (с точностью до гладких замен параметров) при любом конечном числе параметров, сохраняется и принцип хрупкости.

8. Каустики, волновые фронты и их метаморфозы

Один из наиболее важных выводов теории особенностей состоит в универсальности нескольких простых образов вроде складки, сборки и точки возврата, которые должны встречаться повсеместно и которые полезно научиться распознавать. Кроме перечисленных особенностей, часто встречаются еще несколько образов, которые также получили собственные имена: "ласточкин хвост", "пирамида", "кошелек" и др.

Пусть в какой-либо среде распространяется некоторое возмущение (например, ударная волна, свет или эпидемия).

Для простоты начнем с плоского случая. Допустим, в начальный момент времени возмущение имелось на кривой а (рис. 32), и пусть скорость его распространения равна 1. Чтобы узнать, где будет возмущение через время t, нужно отложить по каждой нормали к кривой отрезок длины t. Получающаяся кривая называется волновым фронтом.

Рис. 32. Эволюция волнового фронта


Даже если начальный волновой фронт не имел особенностей, через некоторое время особенности начнут возникать. Например, при распространении возмущения внутрь эллипса, возникают особенности, изображенные на рис. 33. Эти особенности устойчивы (неустранимы малым шевелением начального фронта). Для гладкого начального фронта общего положения с течением времени будут образовываться лишь стандартные особенности такого же типа.

Рис. 33. Особенности эквидистант эллипса


Все иные особенности (например, особенность в центре сжимающейся окружности) при малом шевелении начального фронта рассыпаются на несколько особенностей стандартного вида.

В трехмерном пространстве на гладком волновом фронте общего положения с течением времени возникают лишь ребра возврата и стандартные особенности типа "ласточкин хвост", изображенные на рис. 34 (попытайтесь разобраться в особенностях фронта, распространяющегося внутрь трехосного эллипсоида).

Рис. 34. Ласточкин хвост


Все более сложные особенности при малом шевелении фронта рассыпаются на соединенные ребрами возврата и линиями самопересечения ласточкины хвосты.

Ласточкин хвост можно определить как множество всех точек (а, b, с), таких, что многочлен х>3 + ах>2 + bх + с имеет кратный корень. У этой поверхности есть ребро возврата (В на рис. 34) и линия самопересечения (С на рис. 34).

Ласточкин хвост можно получить из пространственной кривой А = t>2, В = t>3, С = t>4: он образован всеми ее касательными.

Рассмотрим пересечения ласточкиного хвоста параллельными плоскостями общего положения (см. рис. 35).

Эти пересечения являются плоскими кривыми, При поступательном движении плоскости указанные кривые перестраиваются в момент, когда плоскость проходит через вершину хвоста. Перестройка (метаморфоза), происходящая при этом, в точности такая же, как метаморфоза волнового фронта на плоскости (например, при распространении возмущения внутрь эллипса).

Рис. 35. Типичная перестройка волнового фронта на плоскости


Мы можем описать метаморфозы волновых фронтов на плоскости следующим образом. Рассмотрим наряду с основным пространством (в данном случае плоскостью) еще пространство-время (в данном случае трехмерное). Распространяющийся на плоскости волновой фронт заметает в пространстве-времени некоторую поверхность. Оказывается, саму эту поверхность всегда можно рассматривать как волновой фронт в пространстве-времени ("большой фронт"). В случае общего положения особенностями большого фронта будут ласточкины хвосты, ребра возврата и самопересечения, расположенные в пространстве-времени общим образом относительно изохрон (образованных "одновременными" точками пространства-времени). Теперь уже нетрудно сообразить, какие метаморфозы могут испытывать мгновенные волновые фронты на плоскости в случае общего положения; это перестройки сечений большого фронта изохронами.

Изучение метаморфоз волнового фронта при его распространении в трехмерном пространстве сводится таким же образом к исследованию сечений большого (трехмерного) волнового фронта в четырехмерном пространстве-времени трехмерными изохронами, Возникающие метаморфозы изображены на рис. 36.


Еще от автора Владимир Игоревич Арнольд
Истории давние и недавние

Новая книга выдающегося математика современности Владимира Игоревича Арнольда раскрывает ещё одну сторону его многогранного таланта — создание исторических миниатюр, удивительных и по форме, и по содержанию. Простые и яркие изложения собственных воспоминаний и событий многовековой давности всегда несут долю юмора и предстают на страницах книги столь реально, что невольно чувствуешь себя их участником. И ещё одно замечательное свойство «Историй» Арнольда: они всегда поучительны — раскрытые в них человеческие качества удивительным образом перекликаются с современностью.


Рекомендуем почитать
Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Здоровая пища — поиски идеала. Есть ли золотая середина в запутанном мире диет?

Наше здоровье зависит от того, что мы едим. Но как не ошибиться в выборе питания, если число предлагаемых «правильных» диет, как утверждают знающие люди, приближается к 30 тысячам? Люди шарахаются от одной диеты к другой, от вегетарианства к мясоедению, от монодиет к раздельному питанию. Каждый диетолог уверяет, что именно его система питания самая действенная: одни исходят из собственного взгляда на потребности нашего организма, другие опираются на религиозные традиции, третьи обращаются к древним источникам, четвертые видят панацею в восточной медицине… Виктор Конышев пытается разобраться во всем этом разнообразии и — не принимая сторону какой-либо диеты — дает читателю множество полезных советов, а попутно рассказывает, какова судьба съеденных нами генов, какую роль сыграло в эволюции голодание, для чего необходимо ощущать вкус пищи, что и как ели наши далекие предки и еще о многом другом…Виктор Конышев — доктор медицинских наук, диетолог, автор ряда книг о питании.Книга изготовлена в соответствии с Федеральным законом от 29 декабря 2010 г.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.


Знание-сила, 2000 № 07 (877)

Ежемесячный научно-популярный и научно-художественный журнал.