Сверхдержавы искусственного интеллекта - [3]
Началась работа по созданию Национального управления по аэронавтике и исследованию космического пространства (НАСА), были выделены крупные государственные субсидии на развитие математики, науки и образования – так началась космическая гонка. Эта широкомасштабная мобилизация ресурсов принесла свои плоды 12 лет спустя, когда Нил Армстронг стал первым человеком, ступившим на поверхность Луны.
AlphaGo одержал свою первую громкую победу в марте 2016 года в серии из пяти игр против легендарного корейского игрока Ли Седоля. Серия закончилась со счетом четыре к одному. Причем большинство американцев вряд ли обратили внимание, что эти пять игр собрали более 280 млн китайских зрителей[2]. В тот вечер и вспыхнула в Китае лихорадка искусственного интеллекта. Реакция общества в целом была не такой бурной, как реакция американцев на запуск советского спутника, но пламя разгорелось и с тех пор не угасает.
Когда китайские инвесторы, предприниматели и чиновники объединяют усилия для развития какой-либо отрасли, результаты действительно могут потрясти мир. В наши дни Китай вкладывает огромные средства в научные исследования и поддержку предпринимательства, связанного с ИИ. Деньги для стартапов в области ИИ поступают от венчурных инвесторов, технологических гигантов и китайского правительства.
Китайские студенты заразились лихорадкой ИИ и тоже начали принимать участие в научных программах и слушать лекции международных исследователей со своих смартфонов. Основатели стартапов всерьез взялись за реинжиниринг или просто ребрендинг своих компаний, чтобы оседлать эту новую волну.
Менее чем через два месяца после того, как Кэ Цзе проиграл свою последнюю игру AlphaGo, Государственный совет КНР выпустил смелый план по развитию и внедрению ИИ, чтобы догнать и перегнать США[3]. Он требовал большого финансирования, политической поддержки и координации на государственном уровне. Были поставлены четкие задачи, которые предстоит выполнить к 2020 и 2025 годам, и обозначена главная цель – к 2030 году сделать Китай центром глобальных инноваций в области искусственного интеллекта, играющим ведущую роль в сфере теоретических разработок, технологии и внедрения. К 2017 году китайские венчурные инвесторы уже отреагировали на призыв, вложив в стартапы рекордные суммы, составившие 48 % всего венчурного финансирования ИИ в мире[4]. В этом отношении они впервые обогнали США.
Игра по новым правилам
Эту волну государственной поддержки в Китае породила новая парадигма в отношениях между искусственным интеллектом и экономикой. На протяжении десятилетий наука об искусственном интеллекте развивалась медленно, но устойчиво, и только в последнее время начала бурно прогрессировать, позволяя быстро внедрять научные достижения. Задачи технического характера, связанные с победой машины над человеком в игре го, мне хорошо знакомы. Будучи аспирантом Университета Карнеги – Меллона, я занимался разработками в области ИИ под руководством одного из первых его исследователей – Раджа Редди. В 1986 году я написал первую программу[5], победившую чемпиона мира по игре «Отелло» (это упрощенная версия го, в которую играют на доске, разлинованной на 88 клеток). В то время я мог по праву гордиться таким результатом, но сама технология не была настолько зрелой, чтобы найти применение где-либо, кроме простых настольных игр.
То же самое можно сказать и о победе компьютера Deep Blue, созданного IBM, над чемпионом мира по шахматам Гарри Каспаровым в матче 1997 года, который называли «последним рубежом обороны человеческого мозга». После него многие забеспокоились, не пойдут ли роботы войной на человечество, но реальные последствия ограничились подорожанием акций IBM. Искусственный интеллект еще долго находил весьма ограниченное применение, и ученым понадобились десятилетия, чтобы сделать действительно фундаментальный шаг вперед.
Deep Blue действовал «грубой силой», полагаясь в основном на аппаратное обеспечение, которое позволяло быстро просчитывать и оценивать последствия каждого хода. Поэтому, чтобы дополнить его программное обеспечение направляющими эвристиками, понадобилась помощь сильнейших реальных шахматистов. Да, победа была выдающимся достижением инженерной мысли, но в ее основе лежала давно устоявшаяся технология, которая работала только при соблюдении множества условий. Заберите у Deep Blue геометрически простую квадратную шахматную доску восемь на восемь квадратов, и эта машина уже не покажется вам такой умной.
Однако теперь все изменилось. Во время игры Кэ Цзе против AlphaGo состязание шло в пределах доски для го, но было связано с серьезными изменениями в реальном мире. Победа программы породила настоящую лихорадку ИИ в Китае.
Работа AlphaGo основана на технологии глубокого обучения – новаторском методе в области искусственного интеллекта, позволяющем развивать когнитивные способности машин. Программы, основанные на глубоком обучении, теперь могут лучше, чем люди, идентифицировать лица, распознавать речь и выдавать кредиты. На протяжении десятилетий до революции искусственного интеллекта всегда оставалось каких-нибудь пять лет. Но с появлением глубокого обучения эта революция, наконец, началась. Она открыла дорогу эре небывалого повышения производительности, но также и масштабных потрясений на рынках труда, которые повлекут за собой глубокие социально-психологические последствия для людей, – ведь искусственный интеллект будет вытеснять их с рабочих мест. В матче с Кэ Цзе его соперниками стали не роботы-убийцы, управляемые ИИ, которыми нас давно пугают. Это были демоны реального мира, способные вызвать массовую безработицу и другие связанные с ней социальные бедствия. Угроза безработицы оказалась намного ближе, чем предсказывали эксперты, – при этом цвет воротничка уже не будет играть никакой роли: и высококвалифицированные, и простые сотрудники пострадают одинаково. В тот исторический день матча между AlphaGo и Кэ Цзе машина превзошла все человечество в игре в го. Вскоре она окажется рядом с вами в цеху и в вашем офисе.
Послевоенные годы знаменуются решительным наступлением нашего морского рыболовства на открытые, ранее не охваченные промыслом районы Мирового океана. Одним из таких районов стала тропическая Атлантика, прилегающая к берегам Северо-западной Африки, где советские рыбаки в 1958 году впервые подняли свои вымпелы и с успехом приступили к новому для них промыслу замечательной деликатесной рыбы сардины. Но это было не простым делом и потребовало не только напряженного труда рыбаков, но и больших исследований ученых-специалистов.
Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.
Монография посвящена проблеме самоидентификации русской интеллигенции, рассмотренной в историко-философском и историко-культурном срезах. Логически текст состоит из двух частей. В первой рассмотрено становление интеллигенции, начиная с XVIII века и по сегодняшний день, дана проблематизация важнейших тем и идей; вторая раскрывает своеобразную интеллектуальную, духовную, жизненную оппозицию Ф. М. Достоевского и Л. Н. Толстого по отношению к истории, статусу и судьбе русской интеллигенции. Оба писателя, будучи людьми диаметрально противоположных мировоззренческих взглядов, оказались “versus” интеллигентских приемов мышления, идеологии, базовых ценностей и моделей поведения.
Монография протоиерея Георгия Митрофанова, известного историка, доктора богословия, кандидата философских наук, заведующего кафедрой церковной истории Санкт-Петербургской духовной академии, написана на основе кандидатской диссертации автора «Творчество Е. Н. Трубецкого как опыт философского обоснования религиозного мировоззрения» (2008) и посвящена творчеству в области религиозной философии выдающегося отечественного мыслителя князя Евгения Николаевича Трубецкого (1863-1920). В монографии показано, что Е.
Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.
Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.
Один из лучших популяризаторов науки Фрэнк Вильчек в доступной форме описывает основные составляющие физической реальности — пространство, время, материю, энергию и динамическую сложность. Вы узнаете о теории Большого взрыва и возникновении Вселенной, познакомитесь с одними из крупнейших проектов современности: охотой на частицу Хиггса и поиском гравитационных волн, положивших начало новому виду «многоканальной» астрономии. Книга лауреата Нобелевской премии по физике для всех, кто хочет приблизиться к пониманию устройства Вселенной.
Если вы сомневались, что вам может пригодиться математика, эта книга развеет ваши сомнения. Красота приведенных здесь 10 уравнений в том, что пронизывают все сферы жизни, будь то грамотные ставки, фильтрование значимой информации, точность прогнозов, степень влияния или эффективность рекламы. Если научиться вычленять из происходящего данные и математические модели, то вы начнете видеть взаимосвязи, словно на рентгене. Более того, вы сможете управлять процессами, которые другим кажутся хаотичными. В этом и есть смысл прикладной математики. На русском языке публикуется впервые.
Популяризатор науки мирового уровня Стивен Строгац предлагает обзор основных понятий матанализа и подробно рассказывает о том, как они используются в современной жизни. Автор отказывается от формул, заменяя их простыми графиками и иллюстрациями. Эта книга – не сухое, скучное чтение, которое пугает сложными теоретическими рассуждениями и формулами. В ней много примеров из реальной жизни, которые показывают, почему нам всем нужна математика. Отличная альтернатива стандартным учебникам. Книга будет полезна всем, кто интересуется историей науки и математики, а также тем, кто хочет понять, для чего им нужна (и нужна ли) математика. На русском языке публикуется впервые.
Если упражнения полезны, почему большинство их избегает? Если мы рождены бегать и ходить, почему мы стараемся как можно меньше двигаться? Действительно ли сидячий образ жизни — это новое курение? Убивает ли бег колени и что полезнее — кардио- или силовые тренировки? Дэниел Либерман, профессор эволюционной биологии из Гарварда и один из самых известных исследователей эволюции физической активности человека, рассказывает, как мы эволюционировали, бегая, гуляя, копая и делая другие — нередко вынужденные — «упражнения», а не занимаясь настоящими тренировками ради здоровья. Это увлекательная книга, после прочтения которой вы не только по-другому посмотрите на упражнения (а также на сон, бег, силовые тренировки, игры, драки, прогулки и даже танцы), но и поймете, что для борьбы с ожирением и диабетом недостаточно просто заниматься спортом.