Сверхдержавы искусственного интеллекта - [5]

Шрифт
Интервал

Различия между двумя подходами можно увидеть на примере простой задачи, в которой надо определить, есть ли на рисунке кошка. Чтобы помочь программе принять решение, основанный на правилах метод требует установить правило типа «если – то»: если сверху круга расположены два треугольника, то, возможно, кошка на рисунке есть. При использовании метода нейронных сетей программа получит миллионы образцов в виде фотографий с пометкой «кошка» или «нет кошки» и попытается самостоятельно выяснить, какие признаки в миллионах изображений наиболее тесно коррелируют с пометкой «кошка». В 1950-х и 1960-х годах ранние версии искусственных нейронных сетей дали многообещающие результаты и наделали немало шума. Но потом в 1969 году лагерь сторонников правил вырвался вперед, используя аргумент, что нейронные сети ненадежны и ограничены в применении. Метод нейронных сетей быстро вышел из моды, и в 1970-х годах наступила первая «зима искусственного интеллекта». В течение последующих десятилетий о нейронных сетях то вспоминали, то снова забывали. В 1988 году я использовал подход, похожий на метод нейронных сетей (скрытые марковские модели), чтобы создать Sphinx – первую в мире независимую от говорящего программу для распознавания непрерывной речи[7]. О моем достижении написали в New York Times[8]. Но этого оказалось недостаточно, и с началом долгого «ледникового периода» в области ИИ, растянувшегося почти на все 1990-е годы, о нейронных сетях снова забыли.

В конечном счете сегодняшнему возрождению метода способствовали технологические прорывы, касающиеся двух важных базовых элементов нейронных сетей. Я имею в виду большую вычислительную мощность и большие объемы данных. Данные «обучают» программу распознавать шаблоны, обеспечивая ее множеством образцов, а вычислительная мощность позволяет ей быстро анализировать эти образцы.

На заре ИИ, в 1950-х годах, не хватало как данных, так и вычислительной мощности. Но за прошедшие десятилетия все изменилось. Сегодня вычислительная мощность вашего смартфона в миллионы раз больше, чем мощность передовых компьютеров НАСА, отправивших Нила Армстронга на Луну в 1969 году. Появление интернета привело к накоплению самых разнообразных текстов, изображений, видео, кликов, покупок, твитов и так далее. В распоряжении исследователей оказались огромные объемы данных для обучения нейронных сетей, а также дешевые вычислительные мощности высокой производительности. Но сами сети все еще были сильно ограничены в возможностях. Для получения точных решений сложных задач требуется много слоев искусственных нейронов, но на тот момент исследователи еще не нашли способ эффективно обучать слои по мере их добавления. Прорыв в этом направлении, наконец, состоялся в середине 2000-х годов, когда ведущий исследователь Джеффри Хинтон обнаружил способ эффективного обучения добавленных слоев. Нейронные сети словно получили дозу стероидов и обрели невиданную мощь, достаточную, чтобы распознавать речь и объекты. Вскоре нейронные сети, названные новым модным термином «глубокое обучение», уже могли превзойти старые модели в решении различных задач. Однако укоренившиеся предрассудки о методе нейронных сетей заставили многих исследователей ИИ игнорировать технологию, которая тем не менее показывала выдающиеся результаты. Поворотный момент наступил в 2012 году, когда сеть, построенная командой Хинтона, одержала убедительную победу в международном конкурсе компьютерного зрения[9][10].

После десятилетий самоотверженных исследований нейронные сети в одночасье вышли на передний план, теперь в виде глубокого обучения. Этот прорыв обещал растопить лед последней «зимы» ИИ и впервые позволить по-настоящему использовать его силу для решения ряда реальных проблем. Исследователи, футуристы и технические специалисты – все начали твердить о колоссальном потенциале нейросетей. Ожидалось, что скоро они научатся понимать человеческую речь, переводить документы, распознавать изображения, прогнозировать поведение покупателей, выявлять мошенничества и принимать решения о кредитовании, а еще подарят новые способности роботам – от зрения до умения водить машину.

За кулисами глубокого обучения

Так как же работает глубокое обучение? По существу, чтобы получить решение, оптимизированное в соответствии с желаемым результатом, эти алгоритмы используют огромные объемы данных из определенного домена. Самообучающаяся программа решает задачу, обучаясь распознавать глубоко скрытые закономерности и корреляции, связывающие множество точек данных с желаемым результатом. Такой поиск зависимостей становится проще, когда данные имеют пометки, связанные с результатом: «кошка» против «нет кошки»; «нажал» против «не нажимал»; «выиграл игру» против «проиграл игру». Тогда машина может опираться на свои обширные знания об этих корреляциях, многие из которых невидимы или не имеют смысла для человека, и принимать лучшие решения, чем сам человек. Однако для этого требуется огромное количество данных, мощный алгоритм, узкая область и конкретная цель. Если вам не хватает чего-либо из перечисленного, метод не сработает. Слишком мало данных? Алгоритму не будет хватать образцов, чтобы выявить значимые корреляции. Неточно поставлена цель? Алгоритму не хватит четких ориентиров для оптимизации. Глубокое обучение – это то, что известно как «ограниченный ИИ» – интеллект, который берет данные из одного конкретного домена и использует их для оптимизации одного конкретного результата. Это впечатляет, но все еще далеко от «ИИ общего назначения» – универсальной технологии, способной делать все, что может человек. Глубокое обучение находит самое естественное применение в таких областях, как страхование и кредитование. Соответствующих данных о заемщиках предостаточно (кредитный рейтинг, уровень дохода, недавнее использование кредитных карт), и цель оптимизации ясна (минимизировать уровень неплатежей). Сделав следующий шаг в развитии, глубокое обучение приведет в действие самоуправляемые автомобили, помогая им «видеть» мир вокруг них: распознавать объекты в пиксельном изображении с камеры (например, красные восьмиугольники), выяснять, с чем они коррелируют (дорожные знаки «Стоп»), и использовать эту информацию для принятия решений (задействовать тормоз, чтобы медленно остановить автомобиль), оптимальных для достижения желаемого результата (доставить меня безопасно домой в минимальные сроки).


Еще от автора Кайфу Ли
ИИ-2041. Десять образов нашего будущего

Каким может стать будущее человечества под влиянием высоких техологий и искусственного интеллекта? В этой книге один из ведущих мировых экспертов по ИИ объединился с автором-фантастом, чтобы продемонстрировать возможности и вызовы беспрецедентного технологического прогресса.


Рекомендуем почитать
На траверзе — Дакар

Послевоенные годы знаменуются решительным наступлением нашего морского рыболовства на открытые, ранее не охваченные промыслом районы Мирового океана. Одним из таких районов стала тропическая Атлантика, прилегающая к берегам Северо-западной Африки, где советские рыбаки в 1958 году впервые подняли свои вымпелы и с успехом приступили к новому для них промыслу замечательной деликатесной рыбы сардины. Но это было не простым делом и потребовало не только напряженного труда рыбаков, но и больших исследований ученых-специалистов.


Историческое образование, наука и историки сибирской периферии в годы сталинизма

Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.


Интеллигенция в поисках идентичности. Достоевский – Толстой

Монография посвящена проблеме самоидентификации русской интеллигенции, рассмотренной в историко-философском и историко-культурном срезах. Логически текст состоит из двух частей. В первой рассмотрено становление интеллигенции, начиная с XVIII века и по сегодняшний день, дана проблематизация важнейших тем и идей; вторая раскрывает своеобразную интеллектуальную, духовную, жизненную оппозицию Ф. М. Достоевского и Л. Н. Толстого по отношению к истории, статусу и судьбе русской интеллигенции. Оба писателя, будучи людьми диаметрально противоположных мировоззренческих взглядов, оказались “versus” интеллигентских приемов мышления, идеологии, базовых ценностей и моделей поведения.


Князь Евгений Николаевич Трубецкой – философ, богослов, христианин

Монография протоиерея Георгия Митрофанова, известного историка, доктора богословия, кандидата философских наук, заведующего кафедрой церковной истории Санкт-Петербургской духовной академии, написана на основе кандидатской диссертации автора «Творчество Е. Н. Трубецкого как опыт философского обоснования религиозного мировоззрения» (2008) и посвящена творчеству в области религиозной философии выдающегося отечественного мыслителя князя Евгения Николаевича Трубецкого (1863-1920). В монографии показано, что Е.


Технологии против Человека. Как мы будем жить, любить и думать в следующие 50 лет?

Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.


Лес. Как устроена лесная экосистема

Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.


Основы реальности. 10 фундаментальных принципов устройства Вселенной

Один из лучших популяризаторов науки Фрэнк Вильчек в доступной форме описывает основные составляющие физической реальности — пространство, время, материю, энергию и динамическую сложность. Вы узнаете о теории Большого взрыва и возникновении Вселенной, познакомитесь с одними из крупнейших проектов современности: охотой на частицу Хиггса и поиском гравитационных волн, положивших начало новому виду «многоканальной» астрономии. Книга лауреата Нобелевской премии по физике для всех, кто хочет приблизиться к пониманию устройства Вселенной.


Десять уравнений, которые правят миром. И как их можете использовать вы

Если вы сомневались, что вам может пригодиться математика, эта книга развеет ваши сомнения. Красота приведенных здесь 10 уравнений в том, что пронизывают все сферы жизни, будь то грамотные ставки, фильтрование значимой информации, точность прогнозов, степень влияния или эффективность рекламы. Если научиться вычленять из происходящего данные и математические модели, то вы начнете видеть взаимосвязи, словно на рентгене. Более того, вы сможете управлять процессами, которые другим кажутся хаотичными. В этом и есть смысл прикладной математики. На русском языке публикуется впервые.


Бесконечная сила

Популяризатор науки мирового уровня Стивен Строгац предлагает обзор основных понятий матанализа и подробно рассказывает о том, как они используются в современной жизни. Автор отказывается от формул, заменяя их простыми графиками и иллюстрациями. Эта книга – не сухое, скучное чтение, которое пугает сложными теоретическими рассуждениями и формулами. В ней много примеров из реальной жизни, которые показывают, почему нам всем нужна математика. Отличная альтернатива стандартным учебникам. Книга будет полезна всем, кто интересуется историей науки и математики, а также тем, кто хочет понять, для чего им нужна (и нужна ли) математика. На русском языке публикуется впервые.


Парадокс упражнений

Если упражнения полезны, почему большинство их избегает? Если мы рождены бегать и ходить, почему мы стараемся как можно меньше двигаться? Действительно ли сидячий образ жизни — это новое курение? Убивает ли бег колени и что полезнее — кардио- или силовые тренировки? Дэниел Либерман, профессор эволюционной биологии из Гарварда и один из самых известных исследователей эволюции физической активности человека, рассказывает, как мы эволюционировали, бегая, гуляя, копая и делая другие — нередко вынужденные — «упражнения», а не занимаясь настоящими тренировками ради здоровья. Это увлекательная книга, после прочтения которой вы не только по-другому посмотрите на упражнения (а также на сон, бег, силовые тренировки, игры, драки, прогулки и даже танцы), но и поймете, что для борьбы с ожирением и диабетом недостаточно просто заниматься спортом.