Структурный анализ систем - [5]
Где:
П>1 — температурное поле разогретого паяльника;
В>1> — олово;
В>2> — вывод (ножка) радиоэлемента.
Задача описывается веполем с полезной и вредной связью. Полезное действие (прямая стрелка от В>1 к В>2) — олово расплавляется и освобождает ножку радиоэлемента. Вредное (волнистая стрелка от В>1 к В>2) — горячее олово перегревает ножку радиоэлемента и собственно радиоэлемент.
Одно из возможных решений перейти к внешнему комплексному веполю (3.27), т. е. необходимо внешне ввести дополнительное вещество. Обозначим его как В>3.
Чтобы радиоэлемент при демонтаже не испортился от термоудара, перед нагревом в место распайки вводят припой В>3 с температурой плавления ниже температуры плавления основного припоя (рис. 3.7). Дополнительный припой, представляющий собой сплав олово-свинец-висмут, существенно уменьшает термоудар радиоэлемента.
Рис. 3.7. Введение низкотемпературного припоя
Комплексный вепольна внешней среде — это внешний комплексный веполь, где в качестве В>3 используется внешняя средаВ>ВС, которая может добавляться к В>2 (3.28) или к В>1 (3.29).
Этот вид комплексного веполя целесообразно использовать, когда невозможно или нежелательно присоединять В>3 к имеющимся в системе веществам.
В>ВС — вещество внешней среды, В>3 = В>ВС.
Задача 3.5. Очистка железнодорожных путей
Условия задачи
Очистку железнодорожных путей от снега или грязи осуществляют с помощью специального локомотива или навесного оборудования. Это не идеально. Необходимо приобретать специализированное оборудование, тратить лишнюю энергию, время, человеческие ресурсы на эксплуатацию и ремонт. Как избежать этого?
Разбор задачи
Вепольная схема задачи имеет вид (3.30).
Где:
В>1 — грязь или снег;
В>2 — щетка;
П>1 — вращение щетки.
Одно из возможных решений — перейти к комплексному веполю на внешней среде (3.31).
Где:
В>1 — грязь или снег;
В>2 — щетка;
П>1 — вращение щетки;
В>3 — отражатель;
В>ВС — воздух;
П>2 — набегающий поток.
Очистку железнодорожных путей можно проводить набегающим на локомотив потоком воздуха, направляя его в нужное место с помощью специальных экранов и отверстий (рис. 3.8). Каждый локомотив может быть снабжен таким приспособлением7. Оно может устанавливаться при изготовлении локомотива. Тогда железнодорожные пути не нужно будет специально очищать.
В этом изобретении использовали ресурсы — набегающий поток воздуха.
Рис. 3.8. Очистка железнодорожных путей. А. с. 1 054 483
1 — шасси; 2‒4 — воздуховоды; 2 — заборный воздуховод; 3 — направляющий воздуховод; 4 — вспомогательный воздуховод; 5 — передние стенки воздуховода; 6 — боковые стенки воздуховода; 7 — выпускные окна.
Комплексный вепольна измененной внешней среде — это внешний комплексный веполь, где в качестве В>3 используется измененнаявнешняя средаВ>'>ВС, которая может добавляться к В>1 (3.33) или к В>2 (3.32).
В>«>ВС — видоизмененное вещество внешней среды, В>3 = В>'>ВС.
Под измененной будет пониматься также разложение внешней среды на составляющие элементы и добавки во внешнюю среду.
Этот вид комплексного веполя целесообразно использовать, когда невозможно или нежелательно присоединять В>3 к имеющимся в системе веществам или внешнюю среду.
Задача 3.6. Измерение глубины реки
Условия задачи
При измерении глубины реки через ледяную поверхность необходимо обеспечить надежный контакт ультразвукового (УЗ) излучателя со льдом. На поверхности льда имеется снег, который предварительно расчищают. Лед имеет неровную поверхность и поэтому контакт излучателя со льдом получается в отдельных местах. Для улучшения контакта излучателя со льдом его выравнивают (рис. 3.9). Это трудоемко и требует значительных временных затрат. Как быть?
Рис. 3.9. Измерение глубины реки
Разбор задачи
Вепольную модель задачи можно представить в виде схемы (3.34).
Где:
В>1 — лед;
В>2 — ультразвуковой (УЗ) излучатель;
П>1 — ультразвуковое поле.
Одно из возможных решений — перейти к комплексному веполю на видоизмененной внешней среде (3.35).
Где:
В>1 — лед;
В>2 — излучатель;
П>1 — ультразвук;
В>ВС — снег;
В>«>ВС — уплотненный снег.
Плотный контакт излучателя со льдом можно обеспечить, если утрамбовать снег при помощи самого излучателя (а. с. 900 233).
Мы использовали ресурсы — снег и ультразвуковой излучатель, т. е. ресурсы вещества и поля (рис. 3.10).
Рис. 5.6. Уплотнение снега
Цепной веполь
Цепной веполь образуется соединением простых веполей. Схема цепного веполя представлена (3.36).
Цепной веполь — это комплексный веполь, в котором вещество В>2 развернуто в самостоятельный веполь, включающий П>2, В>3 и связи между ними.
В схеме 3.36 в скобках показан новый веполь, развернутый из вещества В>2.
Задача 3.7. Определение скрытых дефектов
Условия задачи
Как определить скрытые дефекты, например усталостные трещины в лопатках турбины авиадвигателя?
Разбор задачи
Необходимо выявить дефекты турбинной лопатки В>1. Можно подобрать поле П>1, на которое будет отзываться В>1.
Вепольная схема для поиска решения будет иметь вид (3.37).
К лопатке подводят источник, возбуждающий механические колебания (катушка индуктивности). Катушка через усилитель мощности соединена с генератором электрических колебаний. Меняя частоту колебаний генератора, доводят ее до резонансной частоты. Рядом с лопаткой ставят микрофон, передающий эти колебания в электрическом виде на осциллограф (рис. 3.11). По изменению формы колебаний судят о наличии усталостной трещины.
Излагаются методы активизации творческого процесса, такие как мозговой штурм, синектика, морфологический анализ, метод фокальных объектов и метод контрольных вопросов. Приведены история возникновения методов, их основные правила и примеры использования.Материал рекомендуется освоить до изучения ТРИЗ.Книга предназначена для широкого круга читателей, студентов, учащихся школ, инженеров и изобретателей, ученых, преподавателей университетов и людей, решающие творческие задачи.
Эта книга — впервые созданный учебник по АРИЗ-85-В. Она состоит из двух частей: собственно учебника и задачника, выполненных в виде отдельных томов. В данном томе представлен задачник. Его цель — развить навыки использования АРИЗ-85-В. Он содержит задачи и их разбор по АРИЗ-85-В. В книге приводится 104 примера и 98 задач, 231 иллюстрация, 21 формула и 8 физических эффектов. Книга рассчитана на широкий круг читателей и будет особенно полезна тем, кто хочет быстро получать новые идеи.
Как получают целыми ядра грецкого ореха для конфет? Как Форд снизил простои конвейера? И еще 140 примеров и 250 иллюстраций.Не поверите, самые остроумные идеи величайших изобретателей – от Леонардо да Винчи до Стива Джобса – основаны на простых приемах. В книге – самые мощные из них:АНАЛОГИЯ – сделаем подобно…ИНВЕРСИЯ – давайте сделаем наоборот…ЭМПАТИЯ – представим себя на месте…ФАНТАЗИЯ – станем волшебниками! И тогда…
Книга написана по материалам исследований, которые автор собирал для разработки законов развития технических систем. Впервые эта работа была сделана в 1973 году. В дальнейшем автор периодически пополнял эти материалы. Они использовались автором для чтения лекций по законам развития технических систем. Данные материалы могут быть полезны преподавателям и разработчикам ТРИЗ и использованы как для изучения истории ТРИЗ, так и для развития самой теории.
В работе изложена история развития приемов разрешения противоречий, разработанных основателем теории решения изобретательских задач — ТРИЗ Г. С. Альтшуллером. Приемы являются разделом информационного фонда ТРИЗ. В работе проведен анализ всех известных автору модификаций приемов.Данные материалы могут быть полезны преподавателям и разработчикам ТРИЗ, и использованы как для изучения истории ТРИЗ, так и для развития самой теории.
Это самое полное изложение законов развития систем. Книга содержит методику получения перспективных идей, прогноза развития систем и обхода конкурирующих патентов. Материал иллюстрируется около 500 примерами и 500 рисунками. Книга предназначена для всех, кто занимается инновациями, преподавателей университетов, студентов, изучающих теорию решения изобретательских задач (ТРИЗ), инженерное творчество, системный подход и инновационный процесс, а также руководителей предприятий и бизнесменов.
Послевоенные годы знаменуются решительным наступлением нашего морского рыболовства на открытые, ранее не охваченные промыслом районы Мирового океана. Одним из таких районов стала тропическая Атлантика, прилегающая к берегам Северо-западной Африки, где советские рыбаки в 1958 году впервые подняли свои вымпелы и с успехом приступили к новому для них промыслу замечательной деликатесной рыбы сардины. Но это было не простым делом и потребовало не только напряженного труда рыбаков, но и больших исследований ученых-специалистов.
Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.
Монография посвящена проблеме самоидентификации русской интеллигенции, рассмотренной в историко-философском и историко-культурном срезах. Логически текст состоит из двух частей. В первой рассмотрено становление интеллигенции, начиная с XVIII века и по сегодняшний день, дана проблематизация важнейших тем и идей; вторая раскрывает своеобразную интеллектуальную, духовную, жизненную оппозицию Ф. М. Достоевского и Л. Н. Толстого по отношению к истории, статусу и судьбе русской интеллигенции. Оба писателя, будучи людьми диаметрально противоположных мировоззренческих взглядов, оказались “versus” интеллигентских приемов мышления, идеологии, базовых ценностей и моделей поведения.
Монография протоиерея Георгия Митрофанова, известного историка, доктора богословия, кандидата философских наук, заведующего кафедрой церковной истории Санкт-Петербургской духовной академии, написана на основе кандидатской диссертации автора «Творчество Е. Н. Трубецкого как опыт философского обоснования религиозного мировоззрения» (2008) и посвящена творчеству в области религиозной философии выдающегося отечественного мыслителя князя Евгения Николаевича Трубецкого (1863-1920). В монографии показано, что Е.
Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.
Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.