Структурный анализ систем - [15]
Рис. 8.8. Тенденция перехода моно-, би-, полидействия
8.4. Закономерности развития знаний
8.4.1. Общие представления
Нами выявлены следующие закономерности развития знаний:
— Расширение — сжатие.
— Дифференциация — специализация.
— Комбинация известных знаний и интеграция.
— Интеллектуализация.
8.4.2. Расширение — сжатие (свертывание)
Тенденцию «расширение — сжатие» можно продемонстрировать на примере развития различных теорий.
Пример 8.9. Развитие теории электромагнитного взаимодействия
Первоначально электричество и магнетизм считались двумя отдельными силами. Затем многие ученые замечали связь электрических и магнитных явлений. Первым из них был Джованни Доменико Романьози (1802 г.). Далее свой вклад внесли Ганс Христиан Эрстед, Доминика Франсуа Араго, Жан-Батисто Био, Фелекс Савару, Андре-Мари Ампер, Макл Фарадей (1820 г.) Это этапы расширения знаний.
Джеймс Максвелл в 1873 г. свел их воедино, создав классическую электродинамику. Это этап сжатия знаний.
Пример 8.10. Развитие теории гравитации
Опишем только некоторые из шагов развития теории гравитации.
Первый вклад внес древнегреческий астроном Клавдий Птолемей (87—165), разработав геоцентрическую модель мира (центральное положение во Вселенной занимает неподвижная Земля).
Коперник (1473—-1543 гг.) изучал небесные тела в течение 40 лет (этап расширения знаний). В 1543 г. была опубликована его книга «О вращении небесных тел», где была описана гелиоцентрическая модель мира (Солнце является центром небесных тел).
Затем накопились данные, дополняющие и противоречащие теоретическим знаниям Коперника (расхождение астрономических таблиц с наблюдениями), — это этап расширения. Уже теория Коперника не объясняла все имеющиеся дополнительные знания.
Гильберт (1540—1603) предположил, что силы тяготения подобны силе магнитов. Рене Декарт предположил, что тяготение создают вихри тонкой невидимой материи, а планеты подобны телам, попавшим в водяные воронки. Но строгий порядок в мысли о тяготении внес Иоганн Кеплер (1571—1630), который вывел количественные законы движения планет. Потом Галилей добавил закон инерции и принцип независимости действия сил. Роберт Гук (1635—1703) сделал практически первый эскиз закона: «Все небесные тела производят притяжение к их центрам, притягивая не только свои части, как мы это наблюдали на Земле, но и другие небесные тела, находящиеся в сфере их действия».
Следующий этап сделал Кеплер (1571—1630). Он вывел количественные законы движения планет. Его теория включала знания, описанные Коперником (вел три закона, полностью объясняющие видимую неравномерность движения планет). Это этап сжатия.
Галилей добавил закон инерции и принцип независимости действия сил. Многие ученые высказывали предположения о силе притяжения. Это был этап расширения.
Самый значительный вклад в теорию гравитации внес Исаак Ньютон (1642—1727). Он учел знания Коперника, Кеплера и Галилея, открыл закон всемирного тяготения в 1666 году. Вывел формулу силы гравитационного притяжения. Это был этап сжатия. Дальнейшее накопление знаний (расширение) показало неточность теории Ньютона.
Очередной этап сжатия осуществил Эйнштейн в 1915 году, создав общую теорию относительности. Теория Ньютона, в полном согласии с принципом соответствия, оказалась приближением более общей теории, применимым при выполнении двух условий:
1. Гравитационный потенциал в исследуемой системе не слишком велик.
2. Скорости движения в этой системе незначительны по сравнению со скоростью света.
Далее снова стали накапливаться знания, не объясняемые теорией относительности, например гравитационные процессы в квантовых масштабах. К настоящему времени проводятся исследования, но теория квантовой гравитации пока не создана.
Делаются попытки создать единую теорию поля. Пока это этап расширения знаний.
На этапе расширения знаний находится и «Теория всего (Theory of everything —TOE)». Это попытка создать теорию, описывающую все фундаментальные взаимодействия (гравитационноее, электромагнитное, сильное и слабое).
8.4.3. Дифференциация — специализация
От одной области науки отпочковывается наука, и она начинает самостоятельно развиваться.
Пример 8.11. Физика
Первоначально физика была единой наукой. Затем появились отдельные науки — механика, термодинамика, оптика, электродинамика, атомная физика и т. д. Механика разделилась на классическую механику, релятивистскую механику, механику сплошных сред. Последняя наука разделилась на гидромеханику, акустику и механику твердого тела. Каждый из разделов продолжает делиться и специализироваться дальше.
8.4.4. Комбинация известных знаний и интеграция
Новые знания образуются и соединением уже известных.
Пример 8.12. Физика и химия
Например, были науки физика и химия. Затем появились науки физическая химия и химическая физика.
Новые знания могут появляться путем комбинирования старых.
Знание «А» известно, знание «Б» тоже известно. Новое знание «В» получают соединением «А» и «Б»16.
Пример 8.13. Физика и химия
Периодичность солнечных пятен была давно известна, периодичность явлений в ионосфере — тоже; открытие состояло в том, что было найдено явление взаимосвязи между активностью солнечных пятен и функциями ионосферы.
Излагаются методы активизации творческого процесса, такие как мозговой штурм, синектика, морфологический анализ, метод фокальных объектов и метод контрольных вопросов. Приведены история возникновения методов, их основные правила и примеры использования.Материал рекомендуется освоить до изучения ТРИЗ.Книга предназначена для широкого круга читателей, студентов, учащихся школ, инженеров и изобретателей, ученых, преподавателей университетов и людей, решающие творческие задачи.
В работе изложена история развития приемов разрешения противоречий, разработанных основателем теории решения изобретательских задач — ТРИЗ Г. С. Альтшуллером. Приемы являются разделом информационного фонда ТРИЗ. В работе проведен анализ всех известных автору модификаций приемов.Данные материалы могут быть полезны преподавателям и разработчикам ТРИЗ, и использованы как для изучения истории ТРИЗ, так и для развития самой теории.
Предлагается методика продвижения продуктов на рынок, использующая закономерности развития продукта, компании и рынка и их взаимодействие.
Это учебник, описывающий метод решения нестандартных задач, состоящий из 5 шагов. Метод легко усваивается и пригоден для решения задач из любой области знаний. В книге разобрано 88 задач, из них 41 — для самостоятельного решения. Авторский разбор этих задач приведен в приложении. Книга рассчитана на широкий круг читателей, от детей школьного возраста и до людей любых специальностей.
Как получают целыми ядра грецкого ореха для конфет? Как Форд снизил простои конвейера? И еще 140 примеров и 250 иллюстраций.Не поверите, самые остроумные идеи величайших изобретателей – от Леонардо да Винчи до Стива Джобса – основаны на простых приемах. В книге – самые мощные из них:АНАЛОГИЯ – сделаем подобно…ИНВЕРСИЯ – давайте сделаем наоборот…ЭМПАТИЯ – представим себя на месте…ФАНТАЗИЯ – станем волшебниками! И тогда…
Эта книга — впервые созданный учебник по АРИЗ-85-В. Она состоит из двух частей: собственно учебника и задачника, выполненных в виде отдельных томов. В данном томе представлен задачник. Его цель — развить навыки использования АРИЗ-85-В. Он содержит задачи и их разбор по АРИЗ-85-В. В книге приводится 104 примера и 98 задач, 231 иллюстрация, 21 формула и 8 физических эффектов. Книга рассчитана на широкий круг читателей и будет особенно полезна тем, кто хочет быстро получать новые идеи.
Описываются дедуктивные, индуктивные и правдоподобные модели, учитывающие особенности человеческих рассуждений. Рассматриваются методы рассуждений, опирающиеся на знания и на особенности человеческого языка. Показано, как подобные рассуждения могут применяться для принятия решений в интеллектуальных системах.Для широкого круга читателей.
Описана система скоростной конспективной записи, позволяющая повысить в несколько раз скорость записи и при этом получить конспект, удобный для чтения и способствующий запоминанию материала. Излагаемая система позволяет на общей основе создать каждому человеку личные приемы записи, эриентированные на специфику конспектируемых текстов.Книга может быть полезна студентам, школьникам старших классов, научным работникам, слушателям курсов повышения квалификации.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.