Стратегические игры - [19]

Шрифт
Интервал

Теория игр исходит из предположения, что рациональность свойственна всем игрокам. Насколько оно корректно, а следовательно, насколько эффективна теория, использующая его? С одной стороны, очевидно, что это предположение не может быть истинным в буквальном смысле слова. Зачастую люди даже не знают, какой будет их система ценностей, они не думают заранее, как будут ранжировать гипотетические альтернативы, а затем запоминать их рейтинг, пока не столкнутся с проблемой выбора. Поэтому им трудно отследить все возможные последствия различных вариантов стратегического выбора, который могут сделать они и другие игроки, и загодя составить рейтинг различных исходов игры, чтобы определиться с выбором стратегии. Даже если бы они знали свои предпочтения, процесс вычислений все равно был бы далеко не прост. Большинство игр в реальной жизни очень сложны, а многие реальные игроки имеют ограниченные мыслительные и вычислительные способности. Известно, что в таких играх, как шахматы, лучшую стратегию можно вычислить посредством конечного числа шагов, но оно настолько велико, что еще никому не удавалось выполнить такие расчеты, и хорошая игра по-прежнему в значительной мере остается искусством.

Предположение о рациональности приближается к реальности тогда, когда игроки — постоянные участники игры, играющие в нее достаточно часто и извлекающие для себя пользу из ее различных исходов. Такие игроки понимают, как стратегический выбор соперников приводит к тем или иным исходам и насколько хорошо или плохо играют они сами. В этом случае мы можем рассчитывать, что их выбор, даже сделанный не посредством исчерпывающих и осмысленных вычислений, весьма к ним близок. Мы будем считать, что эти игроки неявно выбирают оптимальную стратегию или ведут себя так, будто умеют выполнять такие расчеты наилучшим образом. В главе 5 представлены экспериментальные доказательства того, что накопление опыта ведения игры обусловливает формирование более рационального поведения.

Определение самой лучшей стратегии с учетом аналогичных вычислений соперника — гарантия того, что вы не совершите ошибок, которыми он сможет воспользоваться. Во многих реальных ситуациях вы можете располагать конкретной информацией о том, в чем именно другие игроки недотягивают до стандарта рациональности, и воспользоваться ею в процессе разработки собственной стратегии. Мы кое-что расскажем о подобных расчетах, однако зачастую это все же элемент искусства ведения игр, и его трудно представить в виде правил, подлежащих выполнению. Вы всегда должны помнить о том, что соперники могут просто притворяться, что у них плохие навыки или неэффективная стратегия, проигрывая незначительные суммы в результате плохой игры в надежде на то, что вы поднимете ставки, а они продемонстрируют свой реальный уровень игры и воспользуются вашей доверчивостью. При наличии такого риска безопаснее отталкиваться от предположения, что соперники ведут себя рационально и умеют делать необходимые вычисления, и выбирать лучший ответ на их действия. Иными словами, вам следует исходить из возможностей соперников, а не из их ограничений.

Г. Общее знание правил

Мы полагаем, что на определенном уровне у игроков есть общее понимание правил игры. В комиксе Peanuts («Мелочь пузатая») Люси считала, что в гольфе разрешены силовые приемы, и сбила Чарли Брауна с ног как раз в тот момент, когда он собирался сделать свинг. В теории игр это недопустимо.

Оговорка «на определенном уровне» крайне важна. Мы уже видели, как можно манипулировать правилами текущей игры. Но это лишь признание того, что на более глубоком уровне ведется другая игра — та, в ходе которой игроки выбирают правила игры верхнего уровня. В таком случае возникает резонный вопрос: фиксированы ли эти правила? Например, обратимся к законодательному контексту: каковы правила игры в процессе формирования повестки дня? Они могут сводиться к наличию у председателей комитетов тех или иных полномочий. Тогда как избираются члены комитетов и их председатели? И так далее. На определенном базовом уровне эти правила закреплены конституцией, технологией проведения предвыборной кампании или общими социальными нормами поведения. Мы считаем, что все игроки должны признавать правила этой базовой игры, что и составляет предмет анализа. Безусловно, это идеал; на практике вам может и не представиться возможности продвинуться на достаточно глубокий уровень анализа.

Строго говоря, правила игры состоят: 1) из списка игроков; 2) стратегии, имеющейся в распоряжении каждого игрока; 3) выигрышей каждого игрока по всем возможным комбинациям стратегий, которых придерживаются все игроки; 4) предположения о том, что каждый игрок — это рациональный максимизатор.

Теория игр не позволяет должным образом проанализировать ситуацию, когда один игрок не знает, участвует ли другой игрок в игре, из какого общего множества действий другие игроки выбирают свои действия, какова их система ценностей и являются ли они сознательными максимизаторами своего выигрыша. Однако в реальных стратегических взаимодействиях самую большую выгоду порой можно получить, воспользовавшись элементом неожиданности или совершив то, чего ваши соперники от вас никак не ожидали. Ряд ярких примеров подобного поведения можно найти среди исторических военных конфликтов. Так, в 1967 году Израиль нанес упреждающий удар и уничтожил военно-воздушные силы Египта прямо на земле; в 1973 году наступила очередь Египта застать противника врасплох, начав танковую атаку по всему району Суэцкого канала.


Еще от автора Авинаш Диксит
Теория игр. Искусство стратегического мышления в бизнесе и жизни

Теория игр – это строгое стратегическое мышление. Это искусство предугадывать следующий ход соперника вкупе со знанием того, что он занимается тем же самым. Основная часть теории противоречит обычной житейской мудрости и здравому смыслу, поэтому ее изучение может сформировать новый взгляд на устройство мира и взаимодействие людей. На примерах из кино, спорта, политики, истории авторы показывают, как почти все компании и люди вовлечены во взаимодействия, описываемые теорией игр. Знание этого предмета сделает вас более успешным в бизнесе и жизни.


Рекомендуем почитать
Новый взгляд на мир. Фрактальная геометрия

Хотя в природе всегда существовали объекты с неравномерной и даже хаотичной структурой, ученые долгое время не могли описать их строение математическим языком. Понятие фракталов появилось несколько десятков лет назад. Именно тогда стало ясно, что облака, деревья, молнии, сталактиты и даже павлиний хвост можно структурировать с помощью фрактальной геометрии. Более того, мы сами в состоянии создавать фракталы! В результате последовательного возведения числа в квадрат появляется удивительное по красоте и сложности изображение, которое содержит в себе новый мир…


Теорема века. Мир с точки зрения математики

«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре) Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!


Таблица умножения. Как запомнить. Новый метод

Таблицу умножения перестроена, сделана новая картинка. Объём материала для запоминания сокращён примерно в 5 раз. Можно использовать самую сильную – зрительную память (в прежних картинках таблицы это невозможно). Ученики запоминали таблицу за один – полтора месяца. В ней всего 36 "домиков". Умножение и деление учаться одновременно. Книга обращена к детям, объяснение простое и понятное. Метод позволяет намного облегчить деление с остатком и сокращение дробей. Метод признан Министерством Просвещения России как полезная инновация (Муниципальное образование, инновации и эксперимент 2013/1)


Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления

Для этой книги Алекс Беллос собрал 125 головоломок, созданных за прошедших два тысячелетия, вместе с историями об их происхождении и влиянии. Он выбрал самые захватывающие, увлекательные и стимулирующие работу мысли задачи. Эти головоломки можно считать математическими только в самом широком смысле: их решение требует логического мышления, но не требует глубоких знаний математики. Все эти задачи происходят из Китая, средневековой Европы, викторианской Англии и современной Японии, а также из других времен и мест. Это книга для тех, кто интересуется математикой и логикой и любит разгадывать головоломки. На русском языке публикуется впервые.


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Странности цифр и чисел

Тим Глинн-Джонс — автор этой необычной книги — знает о цифрах все. Вы убедитесь в этом, прочитав его занимательные истории «от нуля до бесконечности». С их помощью вы перестанете опасаться числа 13, разберетесь, какую страшную тайну хранит в себе число 666, узнаете, чем отличается американский миллиард от европейского и почему такие понятия как Время, Вселенная и Смерть, можно определить только через бесконечность.