Стратегические игры - [17]

Шрифт
Интервал

Для того чтобы понять, можно ли считать вашу стратегию исчерпывающей, достаточно ответить на один простой вопрос: содержит ли она настолько четкие указания в отношении ведения игры (с описанием ваших действий в любых непредвиденных обстоятельствах), что если вы запишете их на бумаге, отдадите другому человеку и уедете в отпуск, то этот человек, действуя в качестве вашего представителя, сможет вести игру точно так же, как это сделали бы вы сами? Этот человек будет знать, как поступать в каждой ситуации, возникающей в ходе игры, и у него отпадет необходимость беспокоить вас во время отпуска.

Мы рассмотрим этот простой тест более подробно в главе 3, где раскроем его суть и применим в некоторых конкретных ситуациях. А пока вам просто следует помнить, что стратегия — это исчерпывающий план действий.

Данная концепция вписывается в стандартную трактовку слова «стратегия» как долгосрочного или масштабного плана действий, в отличие от тактики, которая связана с краткосрочными или менее масштабными планами. Например, генералы армии составляют стратегические планы войны или крупного сражения, тогда как нижестоящие офицеры разрабатывают тактику для более мелких столкновений или конкретного театра военных действий с учетом местных условий. Однако в теории игр термин «тактика» вообще не применяется. Термин «стратегия» охватывает все ситуации, обозначая как исчерпывающий план предпринимаемых действий, так и единственный ход, если это все, что требуется в конкретной игре.

Кроме того, слово «стратегия» широко используется для обозначения решений человека, касающихся довольно продолжительного периода жизни и последовательности вариантов выбора, хотя здесь и нет игры в нашем понимании этого слова, то есть как целенаправленного взаимодействия с другими людьми. По всей вероятности, вы уже определились со стратегией построения карьеры. Когда вы начнете получать доход, вам понадобится разработать стратегию сбережений и инвестиций, а со временем запланировать стратегию выхода на пенсию. Такое использование термина «стратегия» совпадает с нашим пониманием стратегии как плана выполнения последовательности действий в ответ на меняющиеся обстоятельства. Единственное различие — мы обозначаем этим термином ситуацию (а именно игру), в которой обстоятельства возникают в результате действий, предпринятых другими целеустремленными игроками.

Б. Выигрыши

На вопрос, какова цель участника игры, большинство новичков в области стратегического мышления отвечают: выиграть. Однако далеко не всегда все так просто. Порой весомое значение имеет уровень победы. Например, если при разработке нового продукта ваш вариант оказывается лишь чуточку лучше, чем у конкурентов, велика вероятность того, что ваш патент могут оспорить. Иногда могут быть и более мелкие призы для нескольких участников игры, а значит, победа — это еще не все. Самое важное, что стратегических игр исключительно с нулевой суммой, или тех, в которых одна сторона выигрывает, а другая проигрывает, совсем мало. Как правило, они сочетают в себе элементы как общего интереса, так и конфликта между игроками. Анализ таких игр со смешанными мотивами требует более точных расчетов, чем простая дихотомия «выигрыш/проигрыш», например сравнения выгоды от сотрудничества с выгодой от отказа от него.

Мы предоставим в распоряжение каждого игрока полноценную числовую шкалу, с которой он сможет сравнивать все логически допустимые исходы игры, отвечающие каждой возможной комбинации вариантов выбора стратегий всеми игроками. Число, соответствующее каждому возможному исходу игры, называется выигрышем игрока для данного исхода. Более высокое значение выигрыша соотносится с результатом, который считается лучшим в системе оценок этого игрока.

Иногда выигрыш представляет собой простой численный рейтинг исходов игры, в котором самый худший исход имеет рейтинг 1, следующий — рейтинг 2 и так далее вплоть до лучшего исхода. В других играх может быть более естественная числовая шкала — например, денежный доход или прибыль компаний, доля зрителей телевизионных сетей и т. д. Зачастую величина выигрыша — всего лишь эмпирическая оценка. В таких случаях необходимо убедиться, что итоги анализа существенно не изменятся в результате изменения этих оценок в рамках допустимого предела погрешности.

В отношении выигрышей нужно четко понимать два важных момента. Во-первых, выигрыш одного игрока охватывает все аспекты исхода игры, представляющие для него интерес. В частности, игроку необязательно быть эгоистом, однако его забота о других должна быть включена в числовую шкалу выигрышей. Во-вторых, мы будем исходить из предположения, что если игрок сталкивается со случайным множеством исходов игры, то число, связанное с этим множеством, представляет собой среднее от выигрышей по каждому отдельному исходу, взвешенных по их вероятности. Таким образом, если в рейтинге одного игрока исход А имеет выигрыш 0, а исход Б — выигрыш 100, то множество исходов А с вероятностью 75 процентов и Б с вероятностью 25 процентов должно обеспечивать выигрыш 0,75 × 0 + 0,25 × 100 = 25. Этот показатель часто называют


Еще от автора Авинаш Диксит
Теория игр. Искусство стратегического мышления в бизнесе и жизни

Теория игр – это строгое стратегическое мышление. Это искусство предугадывать следующий ход соперника вкупе со знанием того, что он занимается тем же самым. Основная часть теории противоречит обычной житейской мудрости и здравому смыслу, поэтому ее изучение может сформировать новый взгляд на устройство мира и взаимодействие людей. На примерах из кино, спорта, политики, истории авторы показывают, как почти все компании и люди вовлечены во взаимодействия, описываемые теорией игр. Знание этого предмета сделает вас более успешным в бизнесе и жизни.


Рекомендуем почитать
Новый взгляд на мир. Фрактальная геометрия

Хотя в природе всегда существовали объекты с неравномерной и даже хаотичной структурой, ученые долгое время не могли описать их строение математическим языком. Понятие фракталов появилось несколько десятков лет назад. Именно тогда стало ясно, что облака, деревья, молнии, сталактиты и даже павлиний хвост можно структурировать с помощью фрактальной геометрии. Более того, мы сами в состоянии создавать фракталы! В результате последовательного возведения числа в квадрат появляется удивительное по красоте и сложности изображение, которое содержит в себе новый мир…


Теорема века. Мир с точки зрения математики

«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре) Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!


Таблица умножения. Как запомнить. Новый метод

Таблицу умножения перестроена, сделана новая картинка. Объём материала для запоминания сокращён примерно в 5 раз. Можно использовать самую сильную – зрительную память (в прежних картинках таблицы это невозможно). Ученики запоминали таблицу за один – полтора месяца. В ней всего 36 "домиков". Умножение и деление учаться одновременно. Книга обращена к детям, объяснение простое и понятное. Метод позволяет намного облегчить деление с остатком и сокращение дробей. Метод признан Министерством Просвещения России как полезная инновация (Муниципальное образование, инновации и эксперимент 2013/1)


Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления

Для этой книги Алекс Беллос собрал 125 головоломок, созданных за прошедших два тысячелетия, вместе с историями об их происхождении и влиянии. Он выбрал самые захватывающие, увлекательные и стимулирующие работу мысли задачи. Эти головоломки можно считать математическими только в самом широком смысле: их решение требует логического мышления, но не требует глубоких знаний математики. Все эти задачи происходят из Китая, средневековой Европы, викторианской Англии и современной Японии, а также из других времен и мест. Это книга для тех, кто интересуется математикой и логикой и любит разгадывать головоломки. На русском языке публикуется впервые.


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Странности цифр и чисел

Тим Глинн-Джонс — автор этой необычной книги — знает о цифрах все. Вы убедитесь в этом, прочитав его занимательные истории «от нуля до бесконечности». С их помощью вы перестанете опасаться числа 13, разберетесь, какую страшную тайну хранит в себе число 666, узнаете, чем отличается американский миллиард от европейского и почему такие понятия как Время, Вселенная и Смерть, можно определить только через бесконечность.