Синергетика. Основы методологии - [7]

Шрифт
Интервал

Стационарное состояние называется устойчивым и обозначается >SU, если существует некоторая область (окрестность >SU) в фазовом пространстве такая, что, как только процесс в какой-то момент времени пришел в состояние из этой области, то он начинает стремиться к устойчивому стационарному состоянию параметра целого >SU. Если такой области нет, т. е. если микроотклонение от точки, соответствующей стационарному значению >SU, приводит к существенным макроизменениям в течении процесса, состояние системы является неустойчивым стационарным состоянием.

В общем случае график >2 = F(>1), соответствующий итерационному соотношению, иллюстрирует закон эволюции системы и позволяет определять стационарные состояния системы и их тип.

Если кривая >2 = F(>1), определяемая соответствующим итерационным соотношением >n+1 = F(>n), пересекает прямую >2 = >1, в точке >S и |F>1(>1)| < 1, то >S — устойчивая стационарная точка, а если |F>1(>1)| > 1, то неустойчивая. Рассмотрим подробнее математическую модель автономного дифференциального уравнения первого порядка d>μ/df = f(>μ). Его общее решение имеет вид.

Если для какой-либо структуры в определенные моменты удалось экспериментально определить как величину выбранного нами параметра целого, так и его производной по времени, то затем, аппроксимируя функцию f(>μ), например, при помощи дробно-рациональной функции

можно найти коэффициенты аппроксимации a>i, b>i, соответствующие экспериментальным данным.

Во многих случаях поведение системы вблизи особых точек, соответствующих нулям или полюсам функции f(>μ) описывается степенной функцией с рациональным или иррациональным показателем степени или логарифмической функции. При этом появляется многозначность поведения исследуемой модели. Величины f(>μ) могут одновременно с различной степенью вероятности принимать конечное или бесконечное множество действительных и комплексных значений, физический смысл которых для реальных систем должен быть специально уточнён.

Экспериментальные данные показывают, что большинство структур после периода бурного роста выходят на стабильный режим. в котором структура находится значительное время.

Этот процесс можно описать, используя квадратичную функцию f(>μ).

Рассмотрим так называемое логистическое уравнение, которое было подробно изучено в связи с анализом роста и стабилизации популяций животных, однако имеет широкое применение при исследовании различных систем. Оно имеет вид d>μ/dt = f(1->μ).

Описываемый этим уравнением процесс имеет две стационарные точки =0 и = 1. Точка =0 неустойчива; это значит, что новые структуры могут появляться, в частности, при потере устойчивости старых. Точка =0 устойчива. Фазовая плоскость уравнения — зависимость d>μ/dt от , представляющая собой параболу, наиболее сжато и полно характеризует особенности процесса.

В некотором смысле логистическое уравнение универсально, так как его интегральные кривые описывают процесс перехода динамической системы из одного — неустойчивого состояния в другое — устойчивое. Оно также характеризует типичный процесс роста и стабилизации структур различной природы. Его решение в случае < 1 имеет вид.

При стремлении к нулю в момент начала роста структуры логистическая кривая асимптотически приближается к экспоненциальной. Однако, по мере увеличения меры в структуре, описываемой этой кривой, развиваются процессы, препятствующие дальнейшему экспоненциальному росту структуры, и вблизи >μ=0,5 различие кривых становится существенным. Логистическая кривая выходит на асимптоту = 1, а экспоненциальная кривая уходит вверх.

Этот закон является простейшим законом, описывающим непрерывным образом формирование новых структур.

Существуют и другие дифференциальные уравнения, решения которых дают функции, позволяющие смоделировать плавный переход из одного состояния в другое. В частности, при анализе роста и размножения биологических объектов нами было получено дифференциальное уравнение d>μ/dt = ->μln>μ, обладающее теми же стационарными точками, что и логистическое уравнение, но позволяющее вместе со своим аналогом, итерационным соотношением со степенной правой частью единым образом описывать рост и размножение объектов.

Во многих случаях процесс роста сложных систем происходит не непрерывно, а путём размножения элементов системы или поглощения растущей системой новых элементов. Если скачки параметра целого малы, то в первом приближении этот дискретный процесс может быть заменён непрерывным, и для его описания может быть использован аппарат дифференциальных уравнений, в противном случае для описания динамики роста и стабилизации структур может быть использован аппарат итерационных соотношений.

Устойчивые стационарные точки фазовой плоскости или графика, представляющего решение системы итерационных соотношений, обычно являются пределом, к которому стремятся фазовые траектории системы. Такие точки называются аттракторами.

Аттракторами могут быть не только устойчивые стационарные точки, но и замкнутые траектории циклического типа (циклы и торы). В последние годы открыты и в настоящее время интенсивно изучаются ациклические аттракторы, названные странными.


Рекомендуем почитать
Продолжим наши игры+Кандибобер

Виктор Пронин пишет о героях, которые решают острые нравственные проблемы. В конфликтных ситуациях им приходится делать выбор между добром и злом, отстаивать свои убеждения или изменять им — тогда человек неизбежно теряет многое.


Черное море

В этой книге океанограф, кандидат географических наук Г. Г. Кузьминская рассказывает о жизни самого теплого нашего моря. Вы познакомитесь с историей Черного моря, узнаете, как возникло оно, почему море соленое, прочтете о климате моря и влиянии его на прибрежные районы, о благотворном действии морской воды на организм человека, о том, за счет чего пополняются воды Черного моря и куда они уходят, о многообразии животного и растительного мира моря. Книга рассчитана на широкий круг читателей.


Краткая история насекомых. Шестиногие хозяева планеты

«Любая история, в том числе история развития жизни на Земле, – это замысловатое переплетение причин и следствий. Убери что-то одно, и все остальное изменится до неузнаваемости» – с этих слов и знаменитого примера с бабочкой из рассказа Рэя Брэдбери палеоэнтомолог Александр Храмов начинает свой удивительный рассказ о шестиногих хозяевах планеты. Мы отмахиваемся от мух и комаров, сражаемся с тараканами, обходим стороной муравейники, что уж говорить о вшах! Только не будь вшей, человек остался бы волосатым, как шимпанзе.


Историческое образование, наука и историки сибирской периферии в годы сталинизма

Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.


Технологии против Человека. Как мы будем жить, любить и думать в следующие 50 лет?

Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.


Лес. Как устроена лесная экосистема

Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.