Синергетика. Основы методологии - [7]
Стационарное состояние называется устойчивым и обозначается >μ>SU, если существует некоторая область (окрестность >μ>SU) в фазовом пространстве такая, что, как только процесс в какой-то момент времени пришел в состояние из этой области, то он начинает стремиться к устойчивому стационарному состоянию параметра целого >μ>SU. Если такой области нет, т. е. если микроотклонение от точки, соответствующей стационарному значению >μ>SU, приводит к существенным макроизменениям в течении процесса, состояние системы является неустойчивым стационарным состоянием.
В общем случае график >μ>2 = F(>μ>1), соответствующий итерационному соотношению, иллюстрирует закон эволюции системы и позволяет определять стационарные состояния системы и их тип.
Если кривая >μ>2 = F(>μ>1), определяемая соответствующим итерационным соотношением >μ>n+1 = F(>μ>n), пересекает прямую >μ>2 = >μ>1, в точке >μ>S и |F>1(>μ>1)| < 1, то >μ>S — устойчивая стационарная точка, а если |F>1(>μ>1)| > 1, то неустойчивая. Рассмотрим подробнее математическую модель автономного дифференциального уравнения первого порядка d>μ/df = f(>μ). Его общее решение имеет вид.
Если для какой-либо структуры в определенные моменты удалось экспериментально определить как величину выбранного нами параметра целого, так и его производной по времени, то затем, аппроксимируя функцию f(>μ), например, при помощи дробно-рациональной функции
можно найти коэффициенты аппроксимации a>i, b>i, соответствующие экспериментальным данным.
Во многих случаях поведение системы вблизи особых точек, соответствующих нулям или полюсам функции f(>μ) описывается степенной функцией с рациональным или иррациональным показателем степени или логарифмической функции. При этом появляется многозначность поведения исследуемой модели. Величины f(>μ) могут одновременно с различной степенью вероятности принимать конечное или бесконечное множество действительных и комплексных значений, физический смысл которых для реальных систем должен быть специально уточнён.
Экспериментальные данные показывают, что большинство структур после периода бурного роста выходят на стабильный режим. в котором структура находится значительное время.
Этот процесс можно описать, используя квадратичную функцию f(>μ).
Рассмотрим так называемое логистическое уравнение, которое было подробно изучено в связи с анализом роста и стабилизации популяций животных, однако имеет широкое применение при исследовании различных систем. Оно имеет вид d>μ/dt = f(1->μ).>μ
Описываемый этим уравнением процесс имеет две стационарные точки >μ=0 и >μ= 1. Точка >μ=0 неустойчива; это значит, что новые структуры могут появляться, в частности, при потере устойчивости старых. Точка >μ=0 устойчива. Фазовая плоскость уравнения — зависимость d>μ/dt от >μ, представляющая собой параболу, наиболее сжато и полно характеризует особенности процесса.
В некотором смысле логистическое уравнение универсально, так как его интегральные кривые описывают процесс перехода динамической системы из одного — неустойчивого состояния в другое — устойчивое. Оно также характеризует типичный процесс роста и стабилизации структур различной природы. Его решение в случае >μ< 1 имеет вид.
При стремлении >μ к нулю в момент начала роста структуры логистическая кривая асимптотически приближается к экспоненциальной. Однако, по мере увеличения меры >μ в структуре, описываемой этой кривой, развиваются процессы, препятствующие дальнейшему экспоненциальному росту структуры, и вблизи >μ=0,5 различие кривых становится существенным. Логистическая кривая выходит на асимптоту >μ = 1, а экспоненциальная кривая уходит вверх.
Этот закон является простейшим законом, описывающим непрерывным образом формирование новых структур.
Существуют и другие дифференциальные уравнения, решения которых дают функции, позволяющие смоделировать плавный переход из одного состояния в другое. В частности, при анализе роста и размножения биологических объектов нами было получено дифференциальное уравнение d>μ/dt = ->μln>μ, обладающее теми же стационарными точками, что и логистическое уравнение, но позволяющее вместе со своим аналогом, итерационным соотношением со степенной правой частью единым образом описывать рост и размножение объектов.
Во многих случаях процесс роста сложных систем происходит не непрерывно, а путём размножения элементов системы или поглощения растущей системой новых элементов. Если скачки параметра целого малы, то в первом приближении этот дискретный процесс может быть заменён непрерывным, и для его описания может быть использован аппарат дифференциальных уравнений, в противном случае для описания динамики роста и стабилизации структур может быть использован аппарат итерационных соотношений.
Устойчивые стационарные точки фазовой плоскости или графика, представляющего решение системы итерационных соотношений, обычно являются пределом, к которому стремятся фазовые траектории системы. Такие точки называются аттракторами.
Аттракторами могут быть не только устойчивые стационарные точки, но и замкнутые траектории циклического типа (циклы и торы). В последние годы открыты и в настоящее время интенсивно изучаются ациклические аттракторы, названные странными.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.