Штурм абсолютного нуля - [6]

Шрифт
Интервал

В то время считали, что газ можно сжижать либо путем глубокого охлаждения, либо сжимая достаточно высоким давлением. Получить низкие температуры было трудно. Поэтому второй путь казался предпочтительным.

Однако не помогало самое высокое давление, которое можно было получить в лабораторных условиях. И тогда исследователи старались реализовать еще большие давления. Так, например, один из них сжимал кислород и азот почти до двухсот атмосфер, поместив эти газы в специальные цилиндры и погрузив их на глубину около двух километров в океане.

Но ни кислород, ни азот, ни водород не проявляли никаких признаков сжижения, какому бы сжатию их ни подвергали.

Многие ученые стали привыкать к мысли, что это так называемые «постоянные газы», то есть газы, не превращающиеся в жидкость ни при каких условиях.

Фарадей не разделял подобных взглядов.

В своих записках он отмечал, что достигнутое охлаждение, очевидно, недостаточно для сжижения таких газов, как кислород, азот или водород, даже при сколь угодно большом давлении. Ученый выражал уверенность в том, что при более глубоком охлаждении задача сжижения атмосферных газов под давлением будет решена.

Но подорванное тяжелым детством здоровье Фарадея все ухудшалось. Начиная с 50–х годов он вынужден постепенно сокращать объем своих исследований, а затем и вовсе их прекратить.

25 августа 1867 года Фарадей скончался. А десять лет спустя французский инженер Кальете впервые осуществил сжижение кислорода.

Луи Поль Кальете родился в 1832 году в небольшом французском городке Шатильон на Сене в семье промышленника. Вскоре по окончании Горного института он руководит чугуноплавильными заводами своего отца.

Стремясь усовершенствовать производство, молодой инженер изучает металлургические процессы.

Судя по всему, на этом поприще он добился немалых успехов. В 1877 году его избирают членом — корреспон- дентом Парижской академии наук — честь, которой удостаивался далеко не каждый провинциальный инженер.

Кальете прославил свое имя не работами в области высоких температур, при которых протекают металлургические процессы. Он вошел в историю физики как один из первопроходцев к абсолютному нулю температуры.

Кальете, подобно многим своим предшественникам, начал эксперименты с попыток сжижения газа под высоким давлением. Первым газом для его опытов послужил ацетилен. Предварительный расчет показал, что для сжижения этого газа при комнатной температуре требуется давление около 60 атмосфер.

Однако перед достижением заданного давления аппаратура неожиданно дала течь, и сжимаемый газ начал просачиваться наружу.

Кальете, внимательно следивший за толстостенным стеклянным сосудом с ацетиленом, успел заметить, что немедленно после возникновения течи в сосуде образовалось легкое облачко, которое быстро исчезало.

Сначала Кальете решил, что обнаруженное им явление обусловлено наличием примесей в ацетилене, предположив, что видел капельки воды. Он повторил опыты, использовав химически чистый ацетилен, и снова появилось облачко.

Теперь сомнений не оставалось. Исследователь наблюдал именно конденсацию ацетилена.

Не теряя времени, Кальете приступает к экспериментам по сжижению атмосферных газов. Он выбирает кислород, так как этот газ было нетрудно получить в чистом виде. Он сжимает кислород до давления примерно 300 атмосфер и затем подвергает толстостенный стеклянный сосуд с кислородом охлаждению до — 29 °C, окружив его испаряющейся двуокисью серы.

Когда Кальете приоткрыл клапан и выпустил из сосуда часть газа, давление его внезапно упало. Расширяясь, газ совершил работу. При этом тепло к газу не подводилось, и по закону сохранения энергии он охладился. Экспериментатор вновь заметил облачко конденсирующихся капель.

Так впервые удалось сжижить кислород.

Эксперименты Кальете подтвердили вывод Фарадея о том, что для сжижения газов существенное значение имеет не только давление, но и температура.

Действительно, детальное исследование роли давления и температуры в процессе сжижения газов, проведенное в 1870 году великим русским химиком Д. И. Менделеевым, показало, что для каждого газа существует предельная температура, выше которой газ не может быть сжижен ни при каком сколь угодно большом давлении. Менделеев назвал эту температуру «абсолютной температурой кипения».

Независимо от Менделеева подобное исследование провел английский физик Томас Эндрюс, который ввел в науку термин «критическая температура».

Представьте себе закрытый сосуд, в котором находится некоторое количество жидкости, например воды. В результате испарения над жидкостью образовывается насыщенный пар. При этом одно и то же вещество существует одновременно в двух состояниях, или, как говорят физики, в двух фазах — жидкой и газообразной.

При комнатной температуре плотность пара значительно меньше плотности соответствующей жидкости.

С повышением температуры плотность жидкости уменьшается, а плотность газа увеличивается.

Наконец наступает момент, когда плотность жидкости и пара совпадает.

Температура, при которой плотности жидкости и ее насыщенного пара совпадают, называется критической температурой данного вещества.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.