Штурм абсолютного нуля - [8]

Шрифт
Интервал

Работы молодого ученого получили признание научного мира. Они заслужили высокую оценку одного из корифеев науки — английского физика Максвелла.

Польские физики с понятным интересом следили за научными успехами своего соотечественника.

Вроблевский получает приглашение перейти на работу в Краковский университет.

До возвращения на родину Вроблевский в течение одного года работал в лаборатории известного в то время химика, члена Парижской академии наук Сент — Клер Девиля, где он провел ряд экспериментов с аппаратом Кальете.

Наблюдая за голубоватым облачком сжиженного кислорода, внезапно появляющегося внутри толстостенного сосуда, чтобы сразу исчезнуть, словно мираж в пустыне, исследователь задумался над вопросом: как удержать необычайно холодную жидкость?

В 1882 году Вроблевский возглавил кафедру физики в Краковском университете. Он немедленно выписал из Парижа аппарат Кальете.

С не меньшим нетерпением ждал прибытия французского аппарата и другой краковский физик — Кароль Ольшевский. Он в течение многих лет безуспешно работал над усовершенствованием устаревшего оборудования для сжижения газов.

Ольшевский пришел в восторг, когда увидел в Кракове современную аппаратуру Вроблевско- го. Физики стали работать вместе.

Краковская установка для сжижения кислорода была собрана в феврале 1883 года. А уже в апреле того же года в трубке аппарата «спокойно» кипела голубоватая жидкость.

Вроблевский и Ольшевский усовершенствовали аппаратуру Кальете.

Стеклянная трубка была изогнута так, что собирающийся в ней жидкий кислород не мог уходить через расширяющуюся верхушку, а удерживался в нижней части трубки.

Далее, для охлаждения трубки использовался жидкий этилен, кипящий не при атмосферном давлении, как это было в экспериментах Кальете, а при давлении в 2,5 сантиметра ртутного столба, то есть в тридцать раз меньшем. Температура была понижена до — 130 °C.

После того как в трубку был введен кислород под высоким давлением, сквозь прозрачную стенку можно было увидеть капельки жидкости, которые, скатываясь, собирались на донышке. «Призрак» приобрел реальное очертание.

Кислород был сжижен без использованного Кальете первоначального расширения газа.

Схема аппарата Вроблевского и Ольшевского: 1— стеклянная трубка с прочными стенками; 2— стальной цилиндр, наполненный кислородом под высоким давлением: 3— сжиженный кислород; 4 — этилен, кипящий при пониженном давлении и температуре 130 °C. Сквозь стеклянную стенку можно было наблюдать, как в аппарате «спокойно» кипела голубоватая жидкость.


Вскоре был получен в устойчивом состоянии и другой сжиженный атмосферный газ — азот.

Продемонстрировав возможность длительного сохранения жидкого кислорода и жидкого азота, польские физики создали предпосылки для исследования этих холодных жидкостей, их практического применения и дальнейшего продвижения по пути к абсолютному нулю.

Воодушевленные своими успехами, Вроблевский и Ольшевский в 1884 году провели серию опытов по сжижению водорода методом Кальете путем расширения. Наблюдаемый при этом легкий туман они приняли за капли жидкого водорода, но полной уверенности в этом не было, так как туман мог быть следствием какой‑либо примеси.

Времена Кальете и Пикте минули. Исследователь, объявивший, что он получил жидкий водород, должен был подтвердить свое заявление более существенными аргументами, чем мимолетное облачко тумана.

Пройти один из наиболее трудных участков пути к абсолютному нулю выпало на долю английского химика и физика Дьюара.

Джеймс Дьюар родился в 1842 году в многодетной семье шотландца — владельца небольшой гостиницы. Он был младшим из семи сыновей. В десятилетнем возрасте Джеймс провалился под лед и в течение нескольких лет после этого происшествия отличался очень слабым здоровьем.

Предоставленный самому себе, мальчик проводил много времени у деревенского столяра, который научил его делать скрипки.

Очевидно, именно тогда у будущего ученого развились ловкость, сноровка и привычка к тонкой физической работе.

Биографы Дьюара отмечают, что в день его золотой свадьбы играли на одной из скрипок, сделанной им самим. На ней была надпись: «Джеймс Дьюар, 1854».

По окончании Эдинбургского университета Дьюар начинает в этом же университете читать лекции по химии. В 1877 году он получает профессуру в Лондонском королевском институте, где работает до последних дней своей жизни.

Научные интересы Дьюара были весьма разнообразны. Но его наиболее выдающиеся достижения относятся к области низких температур.

Узнав о сжижении кислорода, Дьюар выписывает из Парижа аппаратуру и уже летом 1878 года демонстрирует капли жидкого кислорода на своих публичных вечерних чтениях по пятницам.

Работы, проведенные Дьюаром в королевском институте, и его непрерывные демонстрационные опыты наглядно свидетельствовали о том, что сжиженные газы могут и должны «спокойно кипеть в пробирке». Для этого необходимо выполнение двух условий: первое — наличие достаточного количества сжиженного газа, второе — соблюдение предосторожностей, препятствующих немедленному испарению жидкого газа.

Первая проблема к тому времени была уже решена краковскими физиками. Они же наметили путь для решения второй задачи. Напомним, что трубка, в которой сжижался кислород, помещалась в сосуд с жидким этиленом. Образующиеся при испарении этилена холодные пары мешали притоку тепла извне.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.