Штурм абсолютного нуля - [50]
Идея электрического автомобиля не нова. Но долгое время она казалась далекой от реальности. Ведь для питания обычных электродвигателей на каждой автомашине пришлось бы установить собственную «электростанцию». Обмотки сверхпроводящего электродвигателя достаточно зарядить один раз и… навсегда.
Насколько чище сделается окружающий нас воздух, если его не будут загрязнять выхлопные газы современных автомашин.
13. «Разумный» сверхпроводник. Сквозь глухую стенку. Сюрпризы туннельного контакта. Вверх по шкале точности. Необычные воздухоплаватели.
До сих пор в нашем рассказе о практическом применении сверхпроводимости преимущественно фигурировали большие числа. Мощность исчислялась миллионами и миллиардами киловатт, сила тока — десятками тысяч ампер, расстояния — сотнями километров…
Образно говоря, сверхпроводящее устройство нетрудно себе представить как некоего сказочного великана, способного легко взвалить себе на плечи целый железнодорожный состав. Но может ли наш гигант мыслить?
Можно ли построить электронно — вычислительную машину (компьютер) на сверхпроводниках?
Обычно мы пользуемся десятичной системой счисления, содержащей, как следует из ее названия, десять знаков от 0 до 9. Для проведения самых сложных вычислений в компьютере используется двоичная система счисления.
В десятичной системе можно непосредственно изображать числа до девяти. Для того чтобы представить число десять, мы вынуждены прибегнуть к своеобразной хитрости, перевести единицу в следующий разряд: пишем 10. Для изображения числа сто единица переводится еще на один разряд выше: пишем 100 и т. п.
В двоичной системе счисления имеются только два знака: 0 и 1. В этой системе счисления каждый новый разряд увеличивает число не в 10 раз, как в десятичной системе, а лишь в 2 раза. Поэтому для изображения числа два приходится перевести единицу в следующий разряд: пишем 10. Мы пишем 100 для изображения числа четыре, для представления числа восемь пишем 1000, и т. п.
В двоичной системе счисления все арифметические операции выполняются особенно просто: например, вся таблица умножения сводится всего к одному равенству: 1 X 1 = 1.
Неудобство этой системы заключается в громоздкости записи.
Мы предлагаем читателю, в качестве упражнения, изобразить в двоичной системе число 9000. Подскажем, что для этого придется написать четырнадцать знаков!
Манипулировать вручную с таким большим количеством знаков, какими бы простыми они ни были, разумеется, чрезвычайно сложно.
Так почему же компьютер все‑таки «предпочитает» двоичную систему счисления?
Потому что она легче всего воспроизводится машиной.
Например, отключенному реле можно приписать состояние «0», а включенному реле «1»; отсутствие сигнала на выходе электронной схемы — «0», наличие сигнала «1» и т. п. А громоздкость подобной записи компенсируется быстродействием компьютера.
Двоичная информация легко «укладывается» в памяти компьютера. Из двоичных элементов собираются схемы для выполнения логических операций.
Сам принцип использования сверхпроводимости для воспроизведения и запоминания двоичной информации понять нетрудно.
Представьте себе сверхпроводящий контур, в котором протекает незатухающий ток. В зависимости от направления незатухающему току можно приписать информацию «О» или «1». Можно эту информацию приписать и другим состояниям контура: с током «1», без тока «О». А поскольку незатухающий ток может протекать по сверхпроводящему кольцу неограниченное время, то этим определяется способность сверхпроводника долговременно запоминать информацию.
Простейшим («разумным») сверхпроводящим элементом является криотрон, предложенный в 1956 году американским ученым Д. Беком. Он содержит короткий отрезок проволоки из сверхпроводника, обладающего относительно небольшой величиной критического магнитного поля, называемый вентилем. Поверх вентиля навивается однослойная обмотка также из сверхпроводящей проволоки, но изготовленная из металла, обладающего большим значением критического магнитного поля, так называемая управляющая обмотка. Эта обмотка служит для создания магнитного поля, разрушающего сверхпроводимость вентиля.
Пока в управляющей обмотке тока нет, вентиль находится в сверхпроводящем состоянии. Если через управляющую обмотку протекает ток достаточной величины, то возбуждаемое им магнитное поле разрушает сверхпроводимость вентиля. Таким образом, вентиль в зависимости от величины тока в управляющей обмотке либо будет обладать электрическим сопротивлением, либо не будет. Управляющая обмотка все время находится в сверхпроводящем состоянии, так как магнитное поле, достаточное для разрушения сверхпроводимости вентиля, является надостаточным для срыва сверхпроводимости управляющей обмотки.
Один из основных недостатков проволочного криотрона — сравнительно большое время переключения из одного положения в другое: порядка десятитысячных долей секунды.
Когда стало ясно, что такая скорость слишком мала для современных электронных вычислительных машин, разработчики решили заменить проволоки тонкими пленками.
Появился пленочный криотрон. Он состоит из двух пленок, расположенных достаточно близко друг от друга (обычно одна над другой): вентильной и управляющей. Принцип работы прибора остался неизменным, но действовать он стал значительно быстрее: время переключения уменьшилось до 10 наносекунд (одна наносекунда равна одной миллиардной доли секунды).
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.