Штурм абсолютного нуля - [51]
На усовершенствование криотронов было затрачено много усилий. Но к середине 60–х годов исследователи убедились, что пленочные криотроны по своим характеристикам уступают разработанным к тому времени лучшим образцам транзисторов, работающим при комнатной температуре.
Начиная примерно с 60–х годов в книгах и монографиях, посвященных сверхпроводимости, появилось новое имя: Джозефсон. Этот молодой, тогда еще мало известный английский физик сразу приобрел популярность. В науку вошло понятие: эффект Джозефсона.
Представьте себе две пленки из металлов, разделенные слоем изолятора. В такой системе электроны обоих металлов отделены друг от друга как бы глухой стенкой: изолятор ведь не пропускает электрический ток.
Но оказывается, что при определенных условиях электрон может проходить и через «глухую стену». Это позволяют законы квантовой механики, которые, как мы не раз уже убеждались, весьма отличаются от законов, управляющих движением больших тел. Если изоляционный слой достаточно тонкий (его толщина не должна превышать нескольких нанометров), то при подключении пленок к полюсам электрической батареи в цепи возникает слабый электрический ток. Такой контакт между металлами — получил название туннельного.
Особо интересные явления наблюдаются, если туннельный контакт состоит из двух сверхпроводников.
Тогда при прохождении через контакт тока, величина которого не превышает некоторое критическое значение, на контакте падения напряжения не возникает: в цепи протекает незатухающий постоянный электрический ток. Это явление получило название стационарного эффекта Джозефсона.
Эффект Джозефсона: 1 — сверхпроводник; 2 — изолятор; 3 — вольтметр; 4 — амперметр. А — при прохождении через туннельный контакт сверхпроводящего тока, величина которого меньше критического, напряжение на контакте равно нулю. В цепи протекает незатухающий ток. Б — при прохождении через туннельный контакт тока, величина которого больше критического, на контакте возникает падение напряжения, и происходит излучение электромагнитных волн.
Если же величина тока превышает критическую, то на контакте возникает падение напряжения. При этом наблюдается излучение электромагнитных волн. Иными словами, при постоянной разности потенциалов возбуждается переменный ток. Это так называемый нестационарный эффект Джозефсона.
Эффект Джозефсона наблюдается также, если разделить два сверхпроводника слоем нормального, то есть не сверхпроводящего, металла. В этом случае «стенка» может быть сравнительно «толстой» — в десятки и сотни нанометров.
Существуют и другие способы создания контактов, в которых проявляется эффект Джозефсона.
Вот некоторые из них.
Проволоку из сверхпроводника, например ниобия, заостряют, а затем острие прижимается к куску ниобия. Получается так называемый точечный сверхпроводящий контакт.
Между двумя сверхпроводниками можно проложить своеобразный «мост» — микроскопическое сужение (его площадь равна примерно одному квадратному микрометру) между двумя сверхпроводящими пленками.
Это соединение так и называется мостиковым контактом.
Общим для всех перечисленных систем является наличие «слабого» звена или, иными словами, слабой связи между двумя сверхпроводниками. Поэтому они получили название слабо связанных сверхпроводников.
Примечательно, что двадцатидвухлетний студент Кембриджского университета Брийан Джозефсон открыл в 1962 году эффект, названный его именем: он его вычислил на основании теории сверхпроводимости.
В 1963 году американские физики П. Андерсон и Дж. Роуэл экспериментально доказали наличие стационарного эффекта Джозефсона. А в 1965 году харьковские ученые И. К. Янсон, В. М. Свистунов и И. М. Дмитренко впервые обнаружили электромагнитное излучение, возбуждаемое при появлении напряжения на контакте Джозефсона.
За свое открытие Джозефсон был удостоен Нобелевской премии.
Напомним, что при прохождении через джозеф- соновский контакт тока, величина которого меньше критической, падение напряжения на переходе равно нулю. Если же величина тока превышает критическую, то на переходе возникает падение напряжения.
Значит, элемент Джозефсона имеет два устойчивых состояния: наличие и отсутствие напряжения.
В криотронах Джозефсона, созданных на основе слабой связи, время переключения равно сотым долям наносекунды, что в тысячу раз меньше, чем у пленочных криотронов. Энергия, затрачиваемая на единичное переключение, чрезвычайно мала. Чтобы выразить ее в долях джоуля, пришлось бы после запятой перед первой значащей цифрой написать семнадцать нулей.
Математики в таких случаях применяют сокращенную запись, используя отрицательную степень. Итак, энергия, затрачиваемая на единичное переключение криотрона Джозефсона, равна 10>-18 джоулей! При этом на площади в один квадратный сантиметр могут быть размещены свыше тысячи элементов.
Все эти качества слабых сверхпроводников открывают прекрасные перспективы в области разработки новых поколений компьютеров, отличающихся компактностью и быстродействием.
В последнее время в руководствах и справочниках по измерительной технике все чаще можно встретить загадочное для непосвященных слово: сквид.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.