Сборник задач по математике с решениями для поступающих в вузы - [5]

Шрифт
Интервал

1.12. В треугольнике ABC разность углов B и C равна />2. Определите угол C, если известно, что сумма сторон b и c равна k, а высота, опущенная из вершины A, равна h.

1.13. В треугольнике ABC имеется точка O, такая, что углы ABO, ВСО и CAO равны α. Выразите ctg α через площадь треугольника и его стороны.

1.14. В треугольнике ABC дана разность φ углов A и В (φ = A − В > 0). Известно, что высота, опущенная из С на AB, равна BC − AC. Найдите углы треугольника.

1.15. Даны длины высот AA>1 = h>a и ВВ>1 = h>b треугольника ABC и длина CDl биссектрисы угла С. Найдите угол С.

1.16. В треугольник с основанием а и противоположным углом α вписана окружность Через центр этой окружности и концы основания треугольника проведена вторая окружность Найдите ее радиус.

1.17. Докажите, что если длины сторон треугольника образуют арифметическую прогрессию, то центр окружности, вписанной в этот треугольник, и точка пересечения его медиан лежат на прямой, параллельной средней по длине стороне треугольника.

1.18. В треугольнике ABC радиус вписанной окружности равен r, сторона BC больше r в k раз, а высота, опущенная на эту сторону, больше r в 4 раза. Найдите полупериметр p, tg >A/>2 и стороны b и c.

1.19. Углы С, A, В треугольника ABC образуют геометрическую прогрессию со знаменателем 2. Пусть O — центр окружности, вписанной в треугольник ABC, K — центр вневписанной окружности, касающейся стороны AC, L — центр вневписанной окружности, касающейся стороны BC. Докажите, что треугольники ABC и OKL подобны.

1.20. В треугольнике ABC углы A, В и С образуют геометрическую прогрессию со знаменателем 2. Докажите, что

1.21. Докажите, что если P, Q, R — соответственно точки пересечения каждой из сторон BC, CA, AB (или их продолжений) треугольника ABC с некоторой прямой, то

(теорема Менелая).

1.22. Точка D находится на стороне BC треугольника ABC. Докажите, что

AB² · DC + AC² · BD − AD² · BC = BC · DC · BD

(теорема Стюарта).

1.23. На сторонах треугольника ABC взяты точки P, Q и R так, что три прямые AP, BQ и CR пересекаются в одной точке. Докажите, что

(теорема Чевы).

1.24. Через произвольную точку O, взятую внутри треугольника ABC, проведены прямые DE, FK, MN, параллельные соответственно AB, AC, BC, причем F и M лежат на AB, E и K — на BC, N и D — на AC. Докажите, что

1.25. Через центр O правильного треугольника ABC проведена произвольная прямая. Докажите, что сумма квадратов расстояний от вершин треугольника до этой прямой не зависит от выбора прямой.

1.26. Вокруг треугольника ABC, в котором а = 2, b = 3 и угол C = 60°, описана окружность. Определите радиусы окружностей, проходящих через две вершины треугольника и центр описанной окружности.

1.27. Стороны треугольника связаны соотношением а² = c(b + с). Докажите, что угол A вдвое больше угла C.

1.28. Пусть O — центр окружности, вписанной в треугольник ABC. Докажите, что если OA² = OB · OC, то

1.29. Площадь , треугольника ABC удовлетворяет соотношению S = а² − (b − с)². Найдите угол A.

1.30. На сторонах треугольника внешним образом построены квадраты. Докажите, что расстояние между центрами квадратов, построенных на боковых сторонах, равно расстоянию от центра квадрата, построенного на основании, до противоположной вершины треугольника.

1.31. В треугольнике ABC единичной площади проведен отрезок AD, пересекающий медиану CF в точке M, причем FM = ¼CF. Найдите площадь треугольника ABD.

1.32. Докажите, что произведение диагоналей вписанного четырехугольника равно сумме произведений противоположных сторон (теорема Птолемея).

1.33. Отрезок, соединяющий середины оснований трапеции, равен их полуразности. Найдите сумму углов при большем основании трапеции.

1.34. Через центр квадрата ABCD проведена прямая, пересекающая сторону AB в точке N, причем AN : NB = 1 : 2. На этой прямой взята произвольная точка M, лежащая внутри квадрата. Докажите, что расстояния от точки M до сторон квадрата AB, AD, BC и CD, взятые в названном порядке, образуют арифметическую прогрессию.

1.35. Квадрат и правильный треугольник, имеющие общую вершину, вписаны в окружность единичного радиуса. Найдите площадь, покрытую и квадратом и треугольником.

1.36. В окружность вписаны равнобедренный остроугольный треугольник площадью S, и трапеция так, что ее большее основание совпадает с диаметром окружности, а боковые стороны параллельны боковым сторонам треугольника. Средняя линия трапеции равна l. Найдите высоту трапеции.

1.37. Найдите отношение площади трапеции ABCD к площади треугольника AOD, где O —точка пересечения диагоналей трапеции, если известно, что

.

1.38. Два правильных многоугольника с периметрами a и b описаны около окружности, а третий правильный многоугольник вписан в эту окружность. Второй и третий многоугольники имеют каждый вдвое больше сторон, чем первый. Найдите периметр третьего многоугольника.

1.39. Внутри угла AOB, меньшего π, дана точка M, находящаяся на расстоянии а от вершины угла. Отрезок ОМ образует углы α и β со сторонами угла AOB. Найдите радиус R окружности, проходящей через M и отсекающей на сторонах угла AOB хорды, равные 2а.

1.40. Из внешней точки


Рекомендуем почитать
Математический аппарат инженера

Излагаются практически важные разделы аппарата современной математики, которые используются в инженерном деле: множества, матрицы, графы, логика, вероятности. Теоретический материал иллюстрируется примерами из различных отраслей техники. Предназначена для инженерно-технических работников и может быть полезна студентам ВУЗов соответствующих специальностей.


Снова кубик Рубика

Из журнала "Юный техник" №2, 1983 г.


Математика для гиков

Возможно, вам казалось, что вы далеки от математики, а все, что вы вынесли из школы – это «Пифагоровы штаны во все стороны равны». Если вы всегда думали, что математика вам не понадобится, то пора в этом разубедится. В книге «Математика «для гиков» Рафаэля Розена вы не только узнаете много нового, но и на практике разберете, что математикой полон каждый наш день – круглые крышки люков круглы не просто так, капуста Романеско, которая так привлекает наш взгляд, даже ваши шнурки, у которых много общего с вашей ДНК или даже ваша зависть в социальных сетях имеет под собой математические корни.После прочтения вы сможете использовать в разговоре такие термины как классификация Дьюи, Числа Фибоначчи, равновесие Нэша, парадокс Монти Холла, теория хаоса, подготовитесь к тексту Тьюринга, узнаете, как фильм получает Оскар, и что это за эффект бразильского ореха.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Жар холодных числ и пафос бесстрастной логики

Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.


Странности цифр и чисел

Тим Глинн-Джонс — автор этой необычной книги — знает о цифрах все. Вы убедитесь в этом, прочитав его занимательные истории «от нуля до бесконечности». С их помощью вы перестанете опасаться числа 13, разберетесь, какую страшную тайну хранит в себе число 666, узнаете, чем отличается американский миллиард от европейского и почему такие понятия как Время, Вселенная и Смерть, можно определить только через бесконечность.