Сборник задач по математике с решениями для поступающих в вузы - [3]
Приведем пример еще одной задачи, на этот раз геометрической, решение которой находится сразу, как только правильно использованы все ее условия.
Задача 2. Сумма двух противоположных сторон описанного около окружности четырехугольника равна а. Одна из сторон этого четырехугольника имеет длину b, а смежная с нею — длину c. Найти две другие стороны четырехугольника.
Прежде всего нужно использовать условие задачи, в силу которого четырехугольник описан около окружности, а для этого вспомнить основное свойство такого четырехугольника (если оно доказывается в рамках теоретического курса) или непосредственно вывести это свойство (если в теоретическом курсе его нет).
Обратимся к рисунку и проведем из центра окружности O радиусы в точки ее касания P, R, S, и T со сторонами четырехугольника AB, BC, CD и DA, соответственно.
Каждый из радиусов будет перпендикулярен соответствующей ему касательной, а отрезки двух касательных к окружности, проведенные из одной точки, будут попарно равны, т. е. АТ = АP, PВ = ВR, RС = CS, SD = DT.
Отсюда вытекает простое свойство описанного около окружности четырехугольника: суммы длин его противоположных сторон равны как равносоставленные, т. е. как состоящие из одинаковых по длине отрезков. (Рисунок позволяет убедиться в этом непосредственно.)
Воспользуемся остальными условиями задачи: AB + DC = AD + BC = а. Пусть, например, BC = b, DC = с. Тогда AB = а − с, AD = а − b.
Еще раз обратите внимание: мы не размышляли в поисках решения задачи, а лишь заботились о привлечении необходимых теоретических сведений, позволяющих эффективно использовать ее условия. Если вы наблюдательны, то могли заметить, что мы упомянули о том, что радиусы перпендикулярны своим касательным, но не воспользовались этим фактом. Это не совсем так, ибо косвенно мы к нему обращались. Решая задачу, мы воспользовались теоремой о том, что суммы длин противоположных сторон описанного около окружности четырехугольника равны, и даже наметили доказательство этой содержащейся в школьном курсе теоремы, что, вообще говоря, излишне. Мы воспроизвели идею доказательства теоремы, ибо иначе решение было бы менее понятным. Исчезли бы важные геометрические ассоциации, позволяющие усвоить лежащую в его основе идею. По ходу доказательства мы воспользовались теоремой, в силу которой отрезки двух касательных к окружности, которые проведены из одной точки вне этой окружности, равны. Например, для точки С это будут отрезки SC и RC, т. е. SC = RC. При доказательстве этого
факта устанавливают равенство двух прямоугольных треугольников ORC и OSC (они равны, так как имеют общую гипотенузу OC и катеты OR = OS, равные радиусу окружности).
Когда-то для всех общеобразовательных школ был единый учебник геометрии. Десятилетиями он ежегодно воспроизводился. Содержание курса выпускник должен был знать досконально, а, решая задачи, не перегружать рассуждения доказательством теорем, на которые просто требовалась ссылка. Сейчас учебников много, а в их построении появилось разнообразие. Поэтому подобная жесткость со стороны экзаменатора во многих случаях стала невозможной. В рассуждениях появилось больше свободы, они стали более обыденными и менее таинственными. При очень экономном использовании теоретического курса решение задачи может стать менее понятным. Оно не получает необходимого отклика со стороны уже приобретенного учащимся опыта и не находит необходимой интуитивной поддержки.
Не всегда решить задачу удается так же просто, как в двух рассмотренных примерах. Бывает, что приходится выбирать из нескольких возможных вариантов перевода содержательной задачи на язык математических соотношений. При этом выбор может оказаться неудачным. Приходится отступить и начать сначала. В процессе подготовки к экзаменам вам и предстоит научиться делать правильный выбор в ситуациях, близких к стандартным.
И еще: вам предстоит вести правильный диалог с экзаменатором на устном экзамене и с самим собой — на письменном. Экзаменатор, вслушиваясь в ваш ответ на билет, время от времени будет задавать один и тот же вопрос: «Почему?». Не следует удивляться непонятливости вашего экзаменатора. Он задает этот вопрос, чтобы помочь вам. Вы должны были задать этот вопрос себе сами и своевременно на него ответить. Возможно, вы сочли эту подробность излишней, само собой разумеющейся. Тогда вам нужно правильно ответить на вопрос экзаменатора, и он будет удовлетворен. Но не исключено, что правильного ответа вы попросту не знаете. Первым сигналом неблагополучия станет для экзаменатора ваш недовольный тон. Мол, неужели этот факт не очевиден? Еще хуже, если вы начнете прямо агитировать экзаменатора, призывая его стать
сторонником вашей точки зрения, в справедливости которой вы, конечно же, не сомневаетесь. Выбор средств убеждения бывает у абитуриентов весьма широким. Нет смысла их перечислять, ибо все они, за небольшим исключением, напрасны. Позднее на апелляции абитуриент будет утверждать, что отвечал правильно и полно. Он будет и впредь уверен в своей правоте, если не усвоит, что, во-первых, вопрос «Почему?» экзаменатор задает не из любопытства и не из вредности, а из желания добиться от вас
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.