Сборник основных формул по химии для ВУЗов - [19]
CH>3COO¯ + HOH → CH>3COOH + OH¯
Точка эквивалентности в этом случае будет находиться в щелочной среде, поэтому следует применять индикатор, меняющий окраску при рН < 7, например фенолфталеин.
Титрование слабого основания сильной кислотой
NH>4OH + HCl → NH>4Cl + Н>2O
NH>4OH + Н>+ → NH>4>+ + Н>2O
Образующаяся соль в растворе подвергается гидролизу:
NH>4>+ + HOH → NH>4OH + Н>+
Точка эквивалентности будет находиться в кислой среде, поэтому можно применять индикатор, меняющий свою окраску при рН < 7, например метилоранж.
4.3. Метод комплексонометрии
Комплексонометрия – титриметриче-ский метод анализа, основанный на реакциях комплексообразования определяемых ионов металлов с некоторыми органическими веществами, в частности с комплексонами.
Комплексоны – аминополикарбоновые кислоты и их производные (соли).
В титриметрическом анализе широко используется один из представителей класса комплексонов – динатриевая соль этилендиаминтетрауксусной кислоты (Ма>2Н>2ЭДТА). Этот комплексон часто называют также трилоном Б или комплексном III:
Трилон Б со многими катионами металлов образует прочные, растворимые в воде внутрикомплексные соединения (хелаты). При образовании хелата катионы металла замещают два атома водорода в карбоксильных группах трилона Б и образуют координационные связи с участием атомов азота аминогрупп.
Уравнение реакции: Ме>2+ + Н>2ЭДТА>2- → [МеЭДТА]>2- + 2Н>+
Основные титранты (рабочие растворы): трилон Б, MgSO>4, CaCl>2
Установочные вещества (или первичные стандарты): MgSO>4, CaCl>2
Индикаторы: металлохромные индикаторы, эриохром черный Т
При рН = 7-11 анион этого индикатора (HInd>2-) имеет синюю окраску. С катионами металлов (Са>2+, Mg>2+, Zn>2+ и др.) в слабощелочном растворе в присутствии аммиачного буфера (рН = 8-10) он образует комплексные соединения винно-красного цвета по схеме:
При титровании исследуемого раствора трилоном Б:
Константы нестойкости комплексов равны соответственно:
K>н([CaInd]¯) = 3,9 • 10>-6
K>н([СаЭДТА]>2-) = 2,7 • 10>-11
K>н([MgInd]¯) = 1,0 •1 0>-7
K>н([MgЭДTA]>2-) = 2,0 • 10>-9
4.4. Жесткость воды. Определение жесткости воды
Гидрокарбонатная (временная) жесткость обусловлена присутствием в воде бикарбонатов кальция и магния: Са(HCO>3)>2 и Mg(HCO>3)>2. Она почти полностью устраняется при кипячении воды, так как растворимые гидрокарбонаты при этом разлагаются с образованием нерастворимых карбонатов кальция и магния и гидроксо-карбонатов магния:
Са(HCO>3)>2 = CaCO>3↓ + CO>2↑ + H>2O
Mg(HCO>3)>2 = MgCO>3↓ + CO>2↑ + H>2O
2Mg(HCO>3)>2 = (MgOH)>2CO>3↓ + 3CO>2↑ + H>2O
Постоянная жесткость воды обусловлена присутствием в ней преимущественно сульфатов и хлоридов кальция и магния и при кипячении не устраняется.
Сумма величин временной и постоянной жесткости составляет общую жесткость воды:
Ж>общ. = Ж>вр. + Ж>пост.
Существуют различные способы определения жесткости воды: определение временной жесткости с помощью метода нейтрализации; комплексонометрический метод определения общей жесткости.
Гидрокарбонатная жесткость воды определяется титрованием воды раствором соляной кислоты в присутствии метилового оранжевого, так как рН в точке эквивалентности находится в области перехода окраски этого индикатора.
Са(HCO>3)>2 + 2HCl → CaCl>2 + 2Н>2CO>3
Mg(HCO>3)>2 + 2HCl → MgCl>2 + 2H>2CO>3
До начала титрования рН раствора гидрокарбонатов кальция и магния больше 7 за счет гидролиза солей с участием аниона слабой кислоты. В точке эквивалентности раствор имеет слабокислую реакцию, обусловленную диссоциацией слабой угольной кислоты:
Н>2CO>3 ↔ HCO>3¯ + Н>+
Ж>вр (Н>2O) = с>э(солей) • 1000 (ммоль/л).
Общая жесткость воды (общее содержание ионов кальция и магния) определяется с использованием метода комплексонометрии.
Ж>пост (Н>2O) = с>э(солей) • 1000 (ммоль/л).
4.5. Методы редоксиметрии
Методы редоксиметрии, в зависимости от используемых титрантов, подразделяются на:
1) перманганатометрию. Титрант – раствор перманганата калия КMnO>4. Индикатор – избыточная капля титранта;
2) иодометрию. Титрант – раствор свободного иода I>2 или тиосульфата натрия Na>2S>2O>3. Индикатор – крахмал.
При вычисления молярных масс эквивалентов окислителей и восстановителей исходят из числа электронов, которые присоединяет или отдает в данной реакции молекула вещества. Для нахождения молярной массы эквивалента окислителя (восстановителя) нужно его молярную массу разделить на число принятых (отданных) электронов в данной полуреакции.
Например, в реакции окисления сульфата железа(II) перманганатом калия в кислой среде:
2KMnO>4 + 10FeSO>4 + 8H>2SO>4 = 2MnSO>4 + 5Fe>2(SO>4)>3 + K>2SO>4 + 8H>2O
1 | MnO>4¯ + 8Н>+ + 5ē → Mn>2+ + 4H>2O
5 | Fe>2+ – ē → Fe>3+
ион MnO>4¯ как окислитель принимает пять электронов, а ион Fe>2+ как восстановитель отдает один электрон. Поэтому для расчета молярных масс эквивалентов окислителя и восстановителя их молярные массы следует разделить на пять и на один соответственно.
M>3(Fe>2+) = M(Fe>2+) = 55,85 г/моль.
В реакции окисления сульфита натрия перманганатом калия в нейтральной среде:
2KMnO>4 + 3Na>2SO>3 + Н>2O → 2MnO>2 + 3Na>2SO>4 + 2KOH
2 | MnO>4¯ + 2Н>2O + Зē → MnO>2 + 4OH¯
3 | SO>3>2- + 2OH¯ + 2ē → SO

Настоящее учебное пособие предназначено для абитуриентов, сдающих ЕГЭ в 2017 и последующих годах. В связи с обновлением большинства учебных пособий и учебников по общей и неорганической химии выпуск учебного пособия такого типа актуален. Данное пособие отличается от аналогичных изданий, например тем, что в конце его приводится как бы краткая аннотация лекций, что помогает, с одной стороны, запоминанию, с другой – помогает понять историю возникновения понятий и законов и внутри предметной связи. В этой книге есть решения типовых задач (тесты 27-29), что несомненно повысит качество преподавания.

Химия завтра… О какой химии пойдет речь?О той, которая разгадывает тайны атомно-молекулярных построек, создает новые соединения, помогает одевать, обувать людей, строить города, машины.О той, которая разгадывает тайны белковых молекул, составляющих основу живого, и помогает сохранять здоровье человека, продлевать его жизнь, умножать плодородие земли, создавать изобилие продуктов.Будущее химии кажется сейчас совершеннейшей фантастикой. Материалы по заказу… Синтетический белок… Искусственная пища… Замена вышедших из строя органов человеческого тела… И многое, многое другое.Об этих «чудесах», становящихся реальностью на наших глазах, или таких, которые суждено будет увидеть только нашим потомкам, вы и прочтете в этой книге.

«Исчезающая ложка, или Удивительные истории из жизни периодической таблицы Менделеева» посвящена одному из величайших достижений науки – Периодической системе химических элементов, удивительно сложному человеческому изобретению. Вы познакомитесь с историей элементов, окунетесь в мир химии и удивительных превращений, узнаете тайны науки, которые тщательно скрывались и оберегались. Для всех увлеченных и неравнодушных.

В этой книге Азимов рассказывает о том, как люди научились использовать энергию — сумели заставить работать на себя огонь, воду, ветер, пар, электричество и солнце. Большое внимание уделено изобретениям, открывшим новые источники энергии, распахнувшие перед человечеством двери новой эпохи. Автор также увлекательно повествует о том, как вырабатывается энергия в живых организмах, какие процессы происходят на уровне молекул в органической и неорганической материи.

Данное пособие создано для специалистов совершенствующих свое мастерство на целлюлозно-бумажных комбинатах.Если Вам понравилось и помогло это пособие, и хотите получить другие в fb-2 — обращайтесь: [email protected].

В книге рассмотрена широкая гамма широко представленных на рынке автохимии присадок и добавок к различным автомобильным технологическим средам: смазочным материалам, топливу, охлаждающим и стеклоочищающим жидкостям.В доступной форме приведено описание характеристик и особенностей свойств различных препаратов, даны рекомендации по их применению, в том числе для безразборного технического сервиса систем смазки и охлаждения, а также топливной системы автомобильного двигателя. Представлены препараты для омывающих жидкостей, специальные добавки для консистентных смазок и жидкостей для автоматических коробок передач.Особое внимание уделено применению очистителей топливных систем, антигелей, цетан- и октан-корректоров, ремонтно-восстановительных препаратов и технологий, в т. ч., реметаллизантов, геомодификаторов трения, кондиционеров поверхности, слоистых и нанодобавок, находящих все более широкое применение и позволяющих значительно повысить надежность автомобильной и другой техники.