Самая сложная задача в мире. Ферма. Великая теорема Ферма - [11]
Все эти записки, наброски и беспорядочные бумаги привел в порядок, систематизировал и опубликовал (по крайней мере все, что смог найти и осмыслить) его наследник, первенец Клеман-Самюэль. Он унаследовал не только должности отца, но и, по крайней мере частично, страсть к математике.
Помимо прочего, в 1670 году сын опубликовал комментарии к Диофанту, собрав все пометки отца на полях. Именно так до нас дошла знаменитая теорема, которая явно была просто пометкой, сделанной Ферма для себя самого. Он никогда ни с кем не делился ею целиком; единственное оставшееся свидетельство о ней — заметка на полях, которую Клеман-Самюэль, верный памяти отца, расшифровал и посмертно опубликовал.
Ферма обсуждал частные результаты теоремы; но общая формулировка, в том виде, в каком она появляется в его случайной записи, почти точно затерялась бы.
Судьба научной работы иногда зависит от воли некоего человека, который сочтет, что она важна. И таким волоском в случае Ферма стала любовь Клемана-Самюэля к своему отцу и к памяти о нем.
Итак, мы, наконец, пришли к этому полю, на котором Ферма записал свою дьявольскую теорему. "Я нашел, — утверждает он, — этому поистине чудесное доказательство, но поля здесь слишком узки, чтобы записать его".
Любопытно, что в течение веков всегда говорили о Великой теореме Ферма. В математике любой недоказанный результат известен как предположение, или гипотеза. Так, у нас есть гипотеза Римана, гипотеза Гольдбаха и до недавнего времени у нас была гипотеза Пуанкаре, которая, после того как была доказана, превратилась в теорему Пуанкаре — Перельмана. Дело в том, что только доказанные результаты заслуживают звания теоремы.
Но по какой-то причине утверждение Ферма всегда было известно как теорема; возможно, потому что другие утверждения ученого были постепенно доказаны и оставалось только последнее. Следовательно, теореме Ферма понадобилось 350 лет, чтобы оправдать свое название.
ГЛАВА 2
Попытки доказательства Великой теоремы
В течение 350 лет историки математики безуспешно задавались вопросом: действительно Ферма доказал свою теорему или нет? А может, на самом деле он ошибочно верил в то, что ему это удалось? Стиль работы французского математика позволяет предположить все что угодно, хотя одни версии более вероятны, чем другие.
Математические методы эпохи Ферма были очень похожи на те, которыми пользуется прилежный ученик в школе. Другими словами, человечеству понадобилось около 2500 лет на то, чтобы приобрести знания, доступные сейчас выпускнику школы. И наоборот, с тех пор научные понятия усложнились настолько, что неспециалисты уже не в состоянии их понять.
Математики, которой пользовался Уайлс для доказательства Последней теоремы Ферма, не существовало во времена французского ученого. На самом деле большая ее часть была создана только в XX веке. Поэтому чрезвычайно сложно поверить в то, что у Ферма было доказательство его теоремы, которое не смогли получить самые лучшие мировые математические умы в течение 350 лет.
Наиболее вероятно, что Ферма доказал некоторые частные случаи. В замечании 45 к трактату Диофанта отмечается, что он доказал ее для случая n - 4. То есть не существует таких натуральных чисел х, у и z, что х>4 + у>4 - z>4.
Возможно, Ферма также доказал случай n = 3. По крайней мере, он ссылался на это в своей переписке как на доказанный результат, точно так же, как и n = 4. Вероятно, на основе этих двух случаев математик решил, что обобщение сделать очень просто.
Ферма ошибался уже не в первый раз. Он также утверждал, что 2²>p +1 — всегда простое число (делится только на само себя и на единицу), если р — простое. Великий швейцарский математик Леонард Эйлер (1707-1783) доказал, что это не так: при р - 5 утверждение Ферма ложно, поскольку полученное число делится на 641.
Так что Ферма иногда делал неправильные выводы, слишком доверяя интуиции и своим неполным доказательствам. Есть основания думать, что его предполагаемое доказательство Последней теоремы существовало только в его воображении и что отсутствие строгости привело его к очень смелому утверждению на основе пары отдельных случаев... к утверждению, которым, с другой стороны, насколько известно, он не собирался делиться со всеми.
В любом случае, следует отметить, что Великая теорема — это просто любопытное явление, практически мелочь, а не одна из основ математической революции. По сравнению с другими результатами, которые на сегодняшний день так и не доказаны, такими как гипотеза Римана, математическое значение теоремы ослабевает; после ее доказательства не было создано нового и плодородного поля математических исследований. Математики измеряют значимость результата с учетом новой математики, которую этот результат порождает после его доказательства. Дело в том, что Последняя теорема сама по себе ни к чему особенному не ведет.
Однако усилия, потраченные на ее доказательство в течение 350 лет, способствовали развитию важнейших математических теорий. В этом и заключается парадокс данной теоремы: в некотором смысле она представляет собой незначительный результат, замечание, подходящее для поля книги, где она была записана; но огромная сложность доказательства и интерес, который оно вызывало в течение веков, привели к созданию сложных теорий, применение и развитие которых оказались крайне значимыми.
Второе, переработанное и дополненное, издание книги, удостоенной в 1955 году второй премии на конкурсе на лучшую научно-художественную и научно-популярную книгу для детей. Рассказ о природе Ставрополья, ее красоте и богатстве, о возможностях изысканий и открытий в природе родного края. Книга содержит интересные загадочные рассказы, викторины, удивительные рассказы о природе. Она учит любить и охранять природу, воспитывает навыки исследования и успешного использования природных богатств края.
Книга раскрывает удивительный мир грибов, богатство их форм и разновидностей. На ее страницах — наши давние знакомцы, постоянные объекты 'тихой охоты' в лесу — шляпочные грибы, а также менее известные — грибы микроскопические. Читатель узнает о том, какой ущерб причиняют грибы сельскому хозяйству, вызывая болезни растений и животных; ознакомится с их полезными свойствами, широко используемыми в микробиологической промышленности при производстве кормовых дрожжей, аминокислот, витаминов, ферментных препаратов, антибиотиков.
В книге дается описание природы, городов и поселков Огненной Земли и Патагонии, жизни овцеводов, лесорубов, рыбаков и моряков, рассказывается об истории индейских племен, приводятся различные гипотезы и теории их происхождения, говорится о сырьевых богатствах этой далекой территории и о их использовании. [Адаптировано для AlReader].
Наш прекрасный мир и его чудесная природа обрели свой вид только благодаря грибам, без которых немыслима ни одна экосистема. Без них не было бы ни наших лесов, ни нашего климата, да и, возможно, самой жизни. Грибы вездесущи, и, если использовать их правильно, они могут помочь нам в совершенно неожиданных областях. Грибы – партнеры, грибы – мастера утилизации отходов, грибы – чудо-лекарство, грибы – источник страсти… Известный австрийский биолог и специалист по охране природы, автор более 20 книг Роберт Хофрихтер, обобщая научные данные и собственный профессиональный и жизненный опыт, расскажет в этой книге о многом, чего мы до сих пор не знали о грибах.
Птичьи яйца – важная составляющая нашей культуры, символ плодовитости, неотъемлемый атрибут религиозных верований и мифологических представлений. Издревле за яйцами охотились коллекционеры и зачастую рисковали жизнью, взбираясь по скалистым склонам в поисках уникальных экземпляров. Казалось бы, яйцо устроено очень просто – но эта простота лишь кажущаяся. Один из ведущих орнитологов современности, известный британский популяризатор науки, обладатель множества наград за исследования в области поведенческой экологии и орнитологии, Тим Беркхед делится своими уникальными знаниями и раскрывает множество тайн этого настоящего чуда природы.
Книга основателя Игнобелевской (Шнобелевской) премии — сборник эссе о самых разных исследованиях вполне почтенных ученых. Только вот предмет этих исследований заставляет читателей сначала рассмеяться, а потом задуматься о весьма серьезных вещах. Почему чаще всего крадут книги по этике? Как найти оптимальный способ нарезки ветчины с помощью математики? Отчего танцоры в Вегасе получают большие чаевые в определенные месяцы? И какое ухо лучше распознает ложь — правое или левое? Абрахамс рассказывает о подобных довольно странных исследованиях в области биологии, физики, математики и других наук с большим юмором, иронией и — глубоким знанием человеческой природы.