Рассказы о математике с примерами на языках Python и C - [6]

Шрифт
Интервал

Так что с простыми числами не все так просто. Есть и удивительные факты. Например, в 1883 г. русский математик И. М. Первушин из Пермского уезда доказал простоту числа 2>61 - 1 = 2305843009213693951. Даже сейчас компьютеру с запущенной вышеприведенной программой требуется несколько минут на проверку данного числа, а на то время это была поистине гигантская работа.

Кстати интересно, что существуют люди, обладающие уникальными способностями мозга — так например, известны аутисты, способные находить в уме (!) 8-значные простые числа. Как они это делают, непонятно. Такой пример описывается в книге известного врача-психолога Оливера Сакса «Человек, который принял жену за шляпу». По некоторым предположениям, такие люди обладают способностью «видеть» числовые ряды визуально, и пользуются методом «решета Эратосфена» для определения, является ли число простым или нет.

Еще одна интересная гипотеза была выдвинута Ферма, который предположил, что все числа вида




являются простыми. Эти числа называются «числами Ферма». Однако, это оказалось верным только для 5 первых чисел: F>0 = 3, F>1 = 5, F>2 = 17, F>3 = 257, F>4 = 65537. В 1732 году Эйлер опроверг гипотезу, найдя разложение на множители для F>5: F>5 = 641·6700417.

Существуют ли другие простые числа Ферма, пока неизвестно до сих пор. Такие числа растут очень быстро (для примера, F>7 = 340282366920938463463374607431768211457), и их проверка является непростой задачей даже для современных компьютеров.

Актуальны ли простые числа сегодня? Еще как! Простые числа являются основой современной криптографии, так что большинство людей пользуются ими каждый день, даже не задумываясь об этом. Любой процесс аутентификации, например, регистрация телефона в сети, банковские платежи и прочее, требуют криптографических алгоритмов. Суть идеи тут крайне проста и лежит в основе алгоритма RSA, предложенного еще в 1975 году. Отправитель и получатель совместно выбирают так называемый «закрытый ключ», который хранится в надежном месте. Этот ключ представляет собой, как, наверное, читатели уже догадались, простое число. Вторая часть — «открытый ключ», тоже простое число, формируется отправителем и передается в виде произведения вместе с сообщением открытым текстом, его можно опубликовать даже в газете. Суть алгоритма в том, что не зная «закрытой части», получить исходный текст невозможно.

К примеру, если взять два простых числа 444388979 и 444388909, то «закрытым ключом» будет 444388979, а открыто будут передано произведение 197481533549433911 (444388979 * 444388909). Лишь зная вторую половинку, можно вычислить недостающее число и расшифровать им текст.

В чем хитрость? А в том, что произведение двух простых чисел вычислить несложно, а вот обратной операции не существует — если не знать первой части, то такая процедура может быть выполнена лишь перебором. И если взять действительно большие простые числа (например, в 2000 символов длиной), то декодирование их произведения займет несколько лет даже на современном компьютере (к тому времени сообщение станет давно неактуальным). Гениальность данной схемы в том, что в самом алгоритме нет ничего секретного — он открыт и все данные лежат на поверхности (и алгоритм, и таблицы больших простых чисел известны). Сам шифр вместе с открытым ключом можно передавать как угодно, в любом открытом виде. Но не зная секретной части ключа, которую выбрал отправитель, зашифрованный текст мы не получим. Для примера можно сказать, что описание алгоритма RSA было напечатано в журнале в 1977 году, там же был приведен пример шифра. Лишь в 1993 году при помощи распределенных вычислений на компьютерах 600 добровольцев, был получен правильный ответ.

В завершение темы простых чисел, приведем вид так называемой «спирали Улама». Математик СтаниславУлам открыл ее случайно в 1963 году, рисуя во время скучного доклада на бумаге числовую спираль и отмечая на ней простые числа:




Как оказалось, простые числа образуют вполне повторяющиеся узоры из диагональных линий. В более высоком разрешении изображение выглядит так (картинка с сайта http://ulamspiral.com):




В общем, можно предположить что далеко не все тайны простых чисел раскрыты и до сих пор.

6. Совершенные числа

Еще одно удивительное свойство мира чисел было доказано еще Евклидом: если число вида 2>p - 1 является простым (уже известное нам число Мерсенна), то число 2>P-1(2>p - 1) является совершенным, т. е. равно сумме всех его делителей.

Рассмотрим пример для p = 13:

2>13 - 1 = 8191. Как показывает приведенная ранее программа, 8191 — действительно простое число.

2>12 * (2>13 - 1) = 33550336.

Чтобы найти все делители числа и их сумму, напишем небольшую программу:

>def is_perfect(n):

>    sum = 0

>    for i in range(1, int(n / 2) + 1):

>        if n % i == 0:

>            sum += i

>            print(i)

>    print("Сумма",sum)

>    return sum == n


>is_perfect(33550336)

Действительно, 33550336 делится на числа 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8191, 16382, 32764, 65528, 131056, 262112, 524224, 1048448, 2096896, 4193792, 8387584, 16775168. И сумма этих чисел равна искомому 33550336.


Рекомендуем почитать
В поисках бесконечности

За последнее столетие одно из центральных мост в математической науке заняла созданная немецким математиком Г. Кантором теория бесконечных множеств, понятия которой отражают наиболее общие свойства математических объектов. Однако в этой теории был вскрыт ряд парадоксов, вызвавших у многих видных ученых сомнения в справедливости ее основ. В данной книге излагается в популярной форме, какими путями шла человеческая мысль в попытках понять идею бесконечности как в физике, так и в математике, рассказывается об основных понятиях теории множеств, истории развития этой науки, вкладе в нее русских ученых. Книга предназначена для широких кругов читателей, желающих узнать, как менялось представление о бесконечности, чем занимается теория множеств и каково современное состояние этой теории.


Математика на ходу

Как приобщить ребенка к математике и даже сделать так, чтобы он ее полюбил? Замечательные британские популяризаторы науки Роб Истуэй и Майк Эскью нашли веселый и легкий путь к детскому сердцу, превратив страшное пугало – математику – в серию увлекательных игр для детей от 4 до 14 лет. Пусть ваш ребенок исподволь овладевает математической премудростью, играя изо дня в день в угадайку, числовые прятки, двадцаточку и зеленую волну. Вы сможете играть за столом, в очереди к врачу, в магазине, на прогулке, используя подручный счетный материал: машины на стоянке, товары на полках супермаркета, мотоциклистов на дороге… И конечно, ничто не мешает вам переиначивать придуманные авторами математические забавы на свой лад, приспосабливая их ко вкусам и потребностям собственных детей.


Значимые фигуры

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.