Рассказы о математике с примерами на языках Python и C - [3]

Шрифт
Интервал


Сегодня достаточно нажать одну кнопку на калькуляторе, чтобы увидеть его значение: Pi = 3,1415926535… Однако, за этими цифрами скрывается многовековая история. Что такое число Пи? Это отношение длины окружности к ее диаметру. То что это константа, не зависящая от самой длины окружности, знали еще в древности. Но чему она равна? Есть ли у этого числа какая-то внутренняя структура, неизвестная закономерность? Узнать это хотели многие. Самый простой и очевидный способ — взять и измерить. Примерно так вероятно и поступали в древности, точность разумеется была невысокой. Еще в древнем Вавилоне значение числа Пи было известно как 25/8. Затем Архимед предложил первый математический метод вычисления числа Пи, с помощью расчета вписанных в круг многоугольников. Это позволяло вычислять значение не «напрямую», с циркулем и линейкой, а математически, что обеспечивало гораздо большую точность. И наконец в 3-м веке нашей эры китайский математик ЛюХуэй придумал первый итерационный алгоритм — алгоритм, в котором число вычисляется не одной формулой, а последовательностью шагов (итераций), где каждая последующая итерация увеличивает точность. С помощью своего метода Лю Хуэй получил Пи с точностью 5 знаков: π = 3,1416. Дальнейшее увеличение точности заняло сотни лет. Математик из Ирана Джамшидибн Мас‘уд ибн Махмуд Гияс ад-Дин ал-Каши в 15-м веке вычислил число Пи с точностью до 16 знаков, а в 17-м веке голландский математик Лудольф вычислил 32 знака числа Пи. В 19-м веке англичанин Вильям Шенкс, потратив 20 лет, вычислил Пи до 707 знака, однако он так и не узнал, что в 520-м знаке допустил ошибку и все последние годы вычислений оказались напрасны (в итерационных алгоритмах хоть одна ошибка делает все дальнейшие шаги бесполезными).

Что мы знаем о числе Пи сегодня? Действительно, это число весьма интересно:

‐ Число Пи является иррациональным: оно не может быть выражено с помощью дроби вида m/n. Это было доказано только в 1761 году.

‐ Число Пи является трансцендентным: оно не является корнем какого-либо уравнения с целочисленными коэффициентами. Это было доказано в 1882 году.

‐ Число Пи является бесконечным.

‐ Интересное следствие предыдущего пункта: в числе Пи можно найти практически любое число, например свой собственный номер телефона, вопрос лишь в длине последовательности которую придется просмотреть. Можно подтвердить, что так и есть: скачав архив с 10 миллионами знаков числа Пи, я нашел в нем свой номер телефона, номер телефона квартиры где я родился, и номер телефона своей супруги. Но разумеется, никакой «магии» тут нет, лишь теория вероятности. Можно взять любую другую случайную последовательность чисел такой же длины, в ней также найдутся любые заданные числа.

И наконец, перейдем к формулам вычисления Пи, т. к. именно в них можно увидеть красоту числовых взаимосвязей — то, чем интересна математика.

Формула Лю-Хуэя (3й век):




Формула Мадхавы-Лейбница (15 век):




Формула Валлиса (17 век):




Формула Мэчина (18 век):




Попробуем вычислить число Пи по второй формуле. Для этого напишем простую программу на языке Python:

>sum = 0.0

>sign = 1

>for p in range(0,33):

>    sum += 4.0 * sign / (1 + 2 * p)

>    print(p, sum)

>    sign = -sign

Запустим программу в любом онлайн-компиляторе языка Питон (например https://repl.it/languages/python3). Получаем результат:

>Шаг  Значение

>0    4.0

>1    2.666666666666667

>2    3.466666666666667

>3    2.8952380952380956

>4    3.3396825396825403

>5    2.9760461760461765

>6    3.2837384837384844

>7    3.017071817071818

>8    3.2523659347188767

>9    3.0418396189294032

>10   3.232315809405594

>11   3.058402765927333

>12   3.2184027659273333

>13   3.0702546177791854

>14   3.208185652261944

>15   3.079153394197428

>16   3.200365515409549

>17   3.0860798011238346

>18   3.1941879092319425

>19   3.09162380666784

>20   3.189184782277596

>21   3.0961615264636424

>22   3.1850504153525314

>23   3.099944032373808

>24   3.1815766854350325

>25   3.1031453128860127

>26   3.1786170109992202

>27   3.1058897382719475

>28   3.1760651768684385

>29   3.108268566698947

>30   3.1738423371907505

>31   3.110350273698687

>32   3.1718887352371485

Как можно видеть, сделав 32 шага алгоритма, мы получили лишь 2 точных знака. Видно, что алгоритм работает, но количество вычислений весьма велико. Как известно, в 15-м веке индийский астроном и математик Мадхава использовал более точную формулу, получив точность числа Пи в 11 знаков:




Попробуем воспроизвести ее в виде программы, чтобы примерно оценить объем вычислений.

Первым шагом необходимо вычислить √12. Возникает резонный вопрос — как это сделать? Оказывается, уже в Вавилоне был известен метод вычисления квадратного корня, который сейчас так и называется «вавилонским». Суть его в вычислении √S по простой формуле:




Здесь x0 — любое приближенное значение, например для √12 можно взять 3.

Запишем формулу в виде программы:

>from decimal import Decimal


>print ("Квадратный корень:")

>number = Decimal(12)

>result = Decimal(3)

>for p in range(1, 9):

>    result = (result + number / result)/Decimal(2)

>    difference = result**2 - number

>    print (p, result, difference)

>sqrt12 = result

Результаты весьма интересны:


Рекомендуем почитать
В поисках бесконечности

За последнее столетие одно из центральных мост в математической науке заняла созданная немецким математиком Г. Кантором теория бесконечных множеств, понятия которой отражают наиболее общие свойства математических объектов. Однако в этой теории был вскрыт ряд парадоксов, вызвавших у многих видных ученых сомнения в справедливости ее основ. В данной книге излагается в популярной форме, какими путями шла человеческая мысль в попытках понять идею бесконечности как в физике, так и в математике, рассказывается об основных понятиях теории множеств, истории развития этой науки, вкладе в нее русских ученых. Книга предназначена для широких кругов читателей, желающих узнать, как менялось представление о бесконечности, чем занимается теория множеств и каково современное состояние этой теории.


Математика на ходу

Как приобщить ребенка к математике и даже сделать так, чтобы он ее полюбил? Замечательные британские популяризаторы науки Роб Истуэй и Майк Эскью нашли веселый и легкий путь к детскому сердцу, превратив страшное пугало – математику – в серию увлекательных игр для детей от 4 до 14 лет. Пусть ваш ребенок исподволь овладевает математической премудростью, играя изо дня в день в угадайку, числовые прятки, двадцаточку и зеленую волну. Вы сможете играть за столом, в очереди к врачу, в магазине, на прогулке, используя подручный счетный материал: машины на стоянке, товары на полках супермаркета, мотоциклистов на дороге… И конечно, ничто не мешает вам переиначивать придуманные авторами математические забавы на свой лад, приспосабливая их ко вкусам и потребностям собственных детей.


Значимые фигуры

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.