Рассказы о математике с примерами на языках Python и C - [2]

Шрифт
Интервал

>for(int i=0; i

>  printf("%d\n", values[i]);

>}

>values[cnt] = 7;

>cnt++;

Можно пользоваться динамическим распределением памяти, хотя это немного сложнее:

>int *valuesArray = (int*)malloc(10*sizeof(int));

>valuesArray[0] = 1;

>valuesArray[1] = 3;

>valuesArray[2] = 15;

>valuesArray = (int*)realloc(valuesArray, 25*sizeof(int));

>valuesArray[20] = 555;

>valuesArray[21] = 777;

>for(int i=0; i<25; i++) {

>  printf("%d\n", valuesArray[i]);

>}

>free(valuesArray);

Важно заметить, что неинициализированные значения массива, например >valuesArray[16], будут содержать «мусор», некие значения которые были до этого в памяти. Си достаточно низкоуровневый язык, и такие моменты нужно учитывать. Хорошим тоном является инициализация всех переменных при их описании. Вот такой код формально не содержит ошибок:

>int x;

>printf("x=%d\n", x);

Однако при его запуске выведется значение 4196608, или 0, или 32, результат непредсказуем. В большой программе такие ошибки может быть сложно найти, тем более что проявляться они могут не всегда.

Арифметические операции

Сложение, умножение,деление:

>x1 = 3

>x2 = (2 * x1 * x1 + 10*x1 + 7)/x1

Возведение в степень:

>x3 = x1**10

>print(x1, x2, x3)

Переменную также можно увеличить или уменьшить:

>x1 += 1

>x1 -= 10

>print(x1)

Остаток от деления:

>x2 = x1 % 6

>print(x2)

Подсчитаем сумму элементов массива:

>values = [1,2,3,5,10,15,20]

>sum = 0

>for p in values:

>    sum += p

>print(sum)

Для более сложных операций необходимо подключить модуль >math. Вычисление квадратного корня:

>import math


>print(math.sqrt(x3))

Условия задаются отступами, аналогично циклам:

>print (x1)

>if x1 % 2 == 0:

>    print("x1 четное число")

>else:

>    print("x1 нечетное число")

Python может делать вычисления с большими числами, что достаточно удобно:

>x1 = 12131231321321312312313131124141

>print(10 * x1)

>print(math.sqrt(x1))

Можно вывести даже факториал числа 1024, что не сделает ни один калькулятор:

>print(math.factorial(1024))

В Си вычисление суммы элементов массива выглядит так:

>int sum = 0;

>for(int i=0; i

>  sum += values[i];

>}

>printf("Sum=%d\n", sum);

Пожалуй, этого не хватит чтобы устроиться на работу программистом, но вполне достаточно для понимания большинства примеров в книге. Теперь вернемся к математике.

2. Математические фокусы

Для «разминки» рассмотрим несколько фокусов, имеющих отношение к числам. Никаких особых сложностей в них нет, но их знание поможет развеселить или удивить знакомых знанием математики.

Умножение в уме числа на 11

Рассмотрим простой пример: 26 * 11 = 286

Сделать это в уме просто, если взять сумму чисел и поместить в середину: 26 * 11 = 2 [2+6] 6

Аналогично 43 * 11 = 473, 71 * 11 = 781 и так далее.

Чуть длиннее расчет, если сумма чисел больше либо равна 10. Но и тогда все просто: в середину кладется младший разряд, а 1 уходит в старший разряд:

47 * 11 = [4] [4 + 7 = 11] [7] = [4 + 1] [1] [7] = 517

94 * 11 = [9] [9 + 4 = 13] [4] = [10] [3] [4] = 1034

Возведение в квадрат числа, оканчивающегося на 5

Подсчитать это тоже просто. Если число рассмотреть как пару NM, то первая часть результата — это число N, умноженное на (N + 1), вторая часть числа — всегда 25. 35>2 = [3 * 4] [25] = 12 25

Аналогично:

25>2 = [2 * 3] 25 = 625 85>2= [8*9] 25 = 7225 и так далее.

Отгадывание результата

Попросим человека загадать любое число. Например 73. Затем чтобы еще больше запутать отгадывающего, попросим сделать следующие действия:

‐ удвоим число (146)

‐ прибавляем 12 (158)

‐ разделим на 2 (79)

‐ вычтем из результата исходное число (79 - 73 = 6)

В конце мы отгадываем, что результат — 6. Суть в том, что число 6 появляется независимо от того, какое число загадал человек.

Математически, это доказывается очень просто:

(2 * n + 12) / 2 - n = n + 6 - n = 6, независимо от значения n.

Отгадывание чисел

Есть другой фокус с отгадыванием чисел. Попросим человека загадать трехзначное число, числа в котором идут в порядке уменьшения (например 752). Попросим человека выполнить следующие действия:

‐ записать число в обратном порядке (257)

‐ вычесть его из исходного числа (752 - 257 = 495)

‐ к ответу добавить его же, только в обратном порядке (495 + 594)

Получится число 1089, которое «фокусник» и объявляет публике.

Математически это тоже несложно доказать.

‐ Любое число вида abc в десятичной системе счисления представляется так:

abc = 100 * a + 10 * b + c.

‐ Разность чисел abc - cba:

100 * a + 10 * b + c + 100 - 100 * c - 10 * b - a = 100 * a - 100 * c - (a - c) = 100 * (a - c) - (a - c)

‐ Т. к. по условию a - c > 0, то результат можно записать в виде:

100 * (a - c) - (a - c) = 100 * (a - c) - 100 + 90 + 10 - (a - c) = 100 * (a - c - 1) + 10 * 9 + (10 - a + c)

Мы узнали разряды числа, получающегося в результате:

a>1 = a - c - 1, b>1 = 9, c>1 = 10 - a + c

‐ Добавляем число в обратном порядке:

a>1b>1c>1 + c>1b>1a>1 = 100 * (a - c - 1) + 10 * 9 + (10 - a + c) + 100* (10 - a + c) + 10 * 9 + a - c - 1

Если раскрыть все скобки и сократить лишнее, в остатке будет 1089.

3. Число Пи

Вобьем в стену гвоздь, привяжем к нему веревку с карандашом, начертим окружность. Как вычислить длину окружности? Сегодня ответ знает каждый школьник — с помощью числа Пи. Число Пи — несомненно, одна из основных констант мироздания, значение которой было известно еще в древности. Оно используется везде, от кройки и шитья до расчетов гармонических колебаний в физике и радиотехнике.


Рекомендуем почитать
Урожаи и посевы

Первый перевод с французского книги «Recoltes et Semailles» выдающегося математика современности Александра Гротендика. Автор пытается проанализировать природу математического открытия, отношения учителя и учеников, роль математики в жизни и обществе. Текст книги является философски глубоким и нетривиальным и носит характер воспоминаний и размышлений. Книга будет интересна широкому кругу читателей — математикам, физикам, философам и всем интересующимся историческими, методическими и нравственными вопросами, связанными с процессом математического открытия и возникновения новых теорий.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Жар холодных числ и пафос бесстрастной логики

Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.