Радиолокация без формул, но с картинками - [20]
Вводим новое действующее лицо — заказчика. Хотя с точки зрения всеобщего прогресса он персонаж положительный, так как, тормоша специалистов, он вынуждает их развивать и совершенствовать станции, все же общение с ним не всегда приятно. Ведь он все время чего-то требует, а это не самое приятное свойство человека, не правда ли?
Заказчик нашей станции требует, чтобы ему построили станцию с большой дальностью действия, с высокой точностью определения местоположения целей, с хорошей разрешающей способностью и высоким темпом обзора. Ничего себе списочек для одной станции! Но постойте-ка, тут сразу четыре абсолютно непонятных термина! Поясним.
Первое требование означает, что нам необходимо обнаруживать достаточно маленькие цели на возможно больших расстояниях.
Но чем больше расстояние, тем больше сил затрачивает сигнал на преодоление пути и тем слабее возвратившийся отраженный сигнал. Здесь мы имеем полную аналогию с ситуацией, изображенной на рисунке. Со старта марафонского забега отправляется в путь группа полных сил бегунов, а достигают финиша (в нашем случае приемника радиолокационной станции) лишь немногие изнуренные спортсмены (для нас сигналы).
Поэтому для каждой станции существует такое расстояние, что от целей, находящихся на большем удалении, отраженный сигнал заметить, а тем более измерить, не удается. Это расстояние и называют дальностью действия.
Увеличить дальность действия можно за счет повышения энергии сигнала.
Выбранная нами станция излучает сигналы в виде отдельных импульсов того или иного вида. В этом случае дальность действия определяется энергией отдельного импульса А эта энергия зависит от длительности импульса и его средней мощности. Не вдаваясь в детали, скажем, что беспредельно увеличивать мощность нельзя, — это очевидно из простых физических соображений. Если мы используем предельно возможную мощность, а заданная дальность действия еще не достигнута, то энергию сигнала придется увеличить, уменьшив его длительность.
Так поступают не только в радиолокации. Например, одно время строили только пятиэтажные дома, длинные-длинные, порой занимающие целый квартал. Естественно, что число квартир в одном доме при этом могло быть как угодно большим. Итак, казалось бы, за счет использования максимально доступной мощности и большой длительности можно получить сколь угодно большую дальность действия станции. Но… В технике всегда есть место для «но». В этот раз «но» связано со вторым и третьим требованиями заказчика (высокая точность определения местоположения цели и хорошая разрешающая способность). Чтобы понять, в чем заключается противоречие между этими требованиями, рассмотрим в самом простом виде, как в радиолокационной станции определяют местоположение цели.
Где же она?
Точка, в которой находится в данный момент цель, в нашей станции определяется дальностью до цели и двумя углами — углом места и азимутом. Азимут — угол в горизонтальной плоскости, отсчитываемый от направления на север (термин заимствован, вероятно, у путешественников и туристов). Угол места — угол в вертикальной плоскости, отсчитываемый от горизонтальной плоскости (термин, по-видимому, придумали специально для радиолокации). Угол места и азимут (точнее, пересечение плоскостей, которые они определяют) дают нам прямую линию, на которой расположена цель, а дальность указывает, где именно на этой прямой находится цель. Значит, точно измерить угловые координаты и дальность.
Начнем с измерения дальности.
Станция включилась в работу. Сигнал срывается с передающей антенны и со скоростью света устремляется к цели. Одновременно на экране индикатора световой луч развертки начинает свой путь из точки, которая обозначает место расположения станции. Система развертки устроена таким образом, что при отсутствии цели луч будет все время прочерчивать на экране светящуюся горизонтальную линию (но будем все-таки считать, что цель есть). Вот сигнал достиг цели, отразился от нее и, вернувшись к станции, попал на огромное полотнище приемной антенны. И в этот момент луч сделает на экране засечку — цель обнаружена. То же происходит и со всеми последующими сигналами. Если цель приблизится к станции, то сигнал совершит свое путешествие к ней и обратно быстрее, а значит и луч развертки раньше засветит отметку от цели. Так как скорость, с которой путешествует сигнал, постоянна, то время, прошедшее с момента излучения сигнала до его приема, пропорционально удвоенному расстоянию до цели. Поэтому, выбрав подходящий коэффициент пропорциональности, мы можем измерить расстояние на индикаторе, которое успел пробежать луч развертки за это время, непосредственно в километрах или милях. Так мы получаем шкалу дальности на экране индикатора. Теперь нам достаточно заметить цифру, у которой возникает отметка от цели, чтобы сказать, на какой дальности она находится. Но как точно мы можем измерить это расстояние? Чем больше делений на нашей шкале дальности, тем точнее можно произвести отсчет.
Книга представляет собой первую монографию о жизни и деятельности известного мастера литейного дела второй половины XVI–XVII в. Автором собраны сведения примерно о 30 орудиях и многих колоколах, отлитых А. Чоховым. Подробно рассказано о «Царь-пушке», изготовленной в 1586 г., о сконструированной Чоховым «стоствольной пушке». Выявленные архивные материалы позволили реконструировать древнерусскую литейную технологию. Для всех интересующихся историей техники.
В новом, возрожденном из руин Волгограде по улице Советской под номером 39 стоит обыкновенный четырехэтажный жилой дом, очень скромной довоенной архитектуры. Лишь символический образ воина-защитника и один из эпизодов обороны этого здания, изображенные рельефом на торцовой стене со стороны площади имени Ленина, выделяют его среди громадин, выросших после войны. Ниже, почти на всю ширину мемориальной стены, перечислены имена защитников этого дома. Им, моим боевым товарищам, я и посвящаю эту книгу.
В начале войны с Советским Союзом немцы применили на Восточном фронте ту же тактику молниеносной войны, что и в Европе. В приграничных сражениях наши танковые дивизии пытались контратаками остановить немецкие бронированные колонны, но это привело к катастрофе. Немцы были лучше подготовлены, у Вермахта было идеально отлажено взаимодействие между родами войск. Постепенно от тактики контрударов советские танкисты стали переходить к очень эффективной тактике танковых засад, и именно она стала своего рода «противоядием» от «Блицкрига». Август 1941 года стал поистине временем танковых засад.
27 ноября 2005 г. исполнилось 300 лет морской пехоте России. Этот род войск, основанный Петром Великим, за три века участвовал во всех войнах, которые вела Российская империя и СССР. На абордажах, десантах и полях сражений морские пехотинцы сталкивались с турками и шведами, французами и поляками, англичанами и немцами, китайцами и японцами. Они поднимали свои флаги и знамена над Берлином и Веной, над Парижем и Римом, над Будапештом и Варшавой, над Пекином и Бейрутом. Боевая карта морской пехоты простирается от фьордов Норвегии до африканских джунглей.В соответствии с Планом основных мероприятий подготовки и проведения трехсотлетия морской пехоты, утвержденным Главнокомандующим ВМФ, на основе архивных документов и редких печатных источников коллектив авторов составил историческое описание развития и боевой службы морской пехоты.
Записки военного коменданта Берлина А. Г. Котикова рассказывают о первых послевоенных годах в немецкой столице. Автор вспоминает, как в городе налаживалась мирная жизнь, описывает взаимодействие советских оккупационных войск с западными союзниками и жителями Берлина. Много мелких деталей из повседневной жизни города и его военного коменданта делают книгу интересной и уникальной. Воспоминания А. Г. Котикова издаются впервые и рассчитаны на самый широкий круг читателей.
О Средиземноморском походе русского флота 1769–1770 годов и о знаменитом Чесменском сражении, во время которого был полностью истреблен турецкий флот.