Радиоактивные изотопы и их применение - [16]

Шрифт
Интервал

атомов урана 235, т. е. в сутки расходуется приблизительно 30 граммов урана 235. Деление каждого ядра атома урана сопровождается выделением 200 миллионов электрон-вольт энергии. Эта энергия внутри ядерного реактора в результате торможения «осколков» превращается в тепло. В итоге ежесекундно в реакторе выделяется 7 миллионов калорий тепла.

Вода, двигающаяся по трубкам вдоль урановых стержней, нагревается за счет этого тепла и уносит выделяющееся тепло из реактора, охлаждая тем самым его активную зону. Охлаждающая реактор вода находится под давлением 100 атмосфер. Благодаря этому она может нагреваться до высокой температуры. В реакторе атомной электростанции она нагревается до 270°. Вода, охлаждающая активную зону реактора вследствие взаимодействия водорода с нейтронами, становится радиоактивной, и поэтому ее заставляют двигаться по замкнутому кольцу. По выходе из реактора ее направляют в теплообменник, где она отдает свое тепло воде вторичного контура (кольца), превращая ее в пар и охлаждаясь до 190°. Далее она с помощью насосов снова направляется в реактор. Вода вторичного контура не радиоактивна. Пар, образующийся в парогенераторе, приводит в движение паровую турбину электростанции. На рис. 12 приведена принципиальная схема атомной электростанции. Полезная мощность первой атомной электростанции в СССР составляет 5000 киловатт, а тепловая — 30 000 квт. Следовательно, 16,5% тепла, выделяющегося при делении урана, превращается в энергию электрического тока; коэффициент полезного действия станции равен 16,5%.

>Рис. 12. Принципиальная схема первой атомной электростанции в СССР:
>1 — ядерный реактор; 2 — теплообменник (парогенератор); 3 — турбогенератор; 4 — циркуляционные насосы; 5 — питательный насос; 6 — конденсатор

Если не производить охлаждение реактора, то произойдет разрушение тепловыделяющих элементов.

Цепная реакция деления происходит с размножением нейтронов, число которых по мере развития реакции деления возрастает. Возрастает, следовательно, и число актов ежесекундного деления, и поэтому ядерный реактор может разрушиться от чрезмерного перегрева, если часть нейтронов не поглотить посторонними веществами.

В качестве такого поглотителя медленных нейтронов — регулятора скорости реакции — служат стержни из бористой стали. Бор легко вступает во взаимодействие с медленными нейтронами. Если стержни вдвинуты внутрь реактора, то реакция прекращается, так как практически значительная часть нейтронов, получающихся при делении, поглощается бором. Если стержни начать выдвигать, то реакция постепенно ускоряется. Можно подобрать такое положение стержней, при котором ядерный реактор работает с постоянной мощностью, и поддерживать его положение автоматически с помощью прибора, который вдвигает стержни внутрь реактора, как только скорость выделения нейтронов или температура охлаждающей воды превышает определенную норму. Здесь мы имеем дело с регулируемым процессом освобождения атомной энергии. Мы не будем подробнее останавливаться на различного рода конструкциях и типах реакторов на медленных нейтронах, так как это нас уведет далеко от основной темы книги.

8. Ядерный реактор — источник радиоактивных изотопов

Ядра атомов большинства химических элементов взаимодействуют с медленными нейтронами с образованием радиоактивных изотопов, масса которых на единицу больше массы исходного ядра. Эти изотопы являются бета-излучателями с самыми разнообразными периодами полураспада.

Наиболее мощным современным источником медленных нейтронов является ядерный реактор на медленных нейтронах. Он в настоящее время широко используется для облучения различных веществ медленными нейтронами, для получения таким путем радиоактивных изотопов. Вещество для облучения вводится в специальный канал ядерного реактора, который проходит сквозь защиту в слой замедлителя активной зоны реактора (см. рис. 11).

При облучении часть ядер атомов исходного вещества претерпевает превращение под действием нейтронов с образованием ядер атомов радиоактивных изотопов облучаемого элемента. По прошествии времени, достаточного для образования необходимого числа атомов радиоактивного изотопа, облучаемое вещество извлекается из ядерного реактора. Далее оно подвергается химической переработке, при которой производится очистка от образовавшихся примесей других радиоактивных изотопов и в ряде случаев отделение нужного радиоактивного изотопа от облученного вещества. Например, при облучении нейтронами бромбензола (C>6H>5Br) образуется радиоактивный изотоп брома, который легко отделяется от бромбензола путем взбалтывания бромбензола с водой, содержащей в качестве восстановителя сернистокислый натрий. Вода и бензол не смешиваются между собой и после взбалтывания разделяются на два слоя. При этом больше половины радиоактивного брома переходит в водный слой. Это происходит потому, что при образовании радиоактивного брома часть его атомов порывает связь с молекулой бромбензола и остается в виде атомов свободного брома. Эти атомы реагируют с сернистокислым натрием и образуют бромистый натрий, содержаший радиоактивный бром. При взбалтывании с водой бромистый натрий растворяется в воде и оказывается при разделении в водном слое. Таким образом, удается отделить основную массу атомов радиоактивного брома от нерадиоактивных атомов.


Рекомендуем почитать
Знание-сила, 2003 № 10 (916)

Ежемесячный научно-популярный и научно-художественный журнал.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Здоровая пища — поиски идеала. Есть ли золотая середина в запутанном мире диет?

Наше здоровье зависит от того, что мы едим. Но как не ошибиться в выборе питания, если число предлагаемых «правильных» диет, как утверждают знающие люди, приближается к 30 тысячам? Люди шарахаются от одной диеты к другой, от вегетарианства к мясоедению, от монодиет к раздельному питанию. Каждый диетолог уверяет, что именно его система питания самая действенная: одни исходят из собственного взгляда на потребности нашего организма, другие опираются на религиозные традиции, третьи обращаются к древним источникам, четвертые видят панацею в восточной медицине… Виктор Конышев пытается разобраться во всем этом разнообразии и — не принимая сторону какой-либо диеты — дает читателю множество полезных советов, а попутно рассказывает, какова судьба съеденных нами генов, какую роль сыграло в эволюции голодание, для чего необходимо ощущать вкус пищи, что и как ели наши далекие предки и еще о многом другом…Виктор Конышев — доктор медицинских наук, диетолог, автор ряда книг о питании.Книга изготовлена в соответствии с Федеральным законом от 29 декабря 2010 г.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.


Термоядерное оружие

Книга рассчитана на широкий круг читателей, интересующихся термоядерными процессами, термоядерным оружием, принципами его устройства и действия. В книге воины Советской Армии и Военно- Морского Флота познакомятся с наиболее мощным современным видом ядерного оружия — термоядерным оружием, а также с защитой от его поражающего действия. При ознакомлении с книгами серии следует учитывать, что международная система единиц СИ была принята только в 1960 году, а в СССР введена 1 января 1963 года, «в качестве предпочтительной»; теория «ядерной зимы» зародилась в 1983–1985 гг.


Физические основы получения атомной энергии

В настоящей книжке изложены основные вопросы ядерной физики, знание которых необходимо для понимания особенностей ядерной энергии и тех физических принципов, которые используются или предполагаются использоваться в ближайшем будущем для ее производства. Книжка рассчитана на широкий круг военных читателей со средним образованием, стремящихся познакомиться с новой областью науки, имеющей большое практическое значение.


Дмитрий Иванович Менделеев

В книге видного советского философа и историка науки Б. Г. Кузнецова рассказывается о жизни и деятельности великого русского ученого Дмитрия Ивановича Менделеева. Автор показывает сложный образ революционера в науке, величайшего химика, выдающегося технолога, патриота своей страны. Популярно излагается суть открытий и достижений ученого, их значение для развития современной науки, производства и военного дела.


О неслышимых звуках

Открытые в начале XX века ультразвуки нашли широкое применение в самых разнообразных областях науки и техники. Они помогают обнаруживать подводные лодки и различные препятствия на дне морей и рек, используются для промера глубин, для контроля качества металлических конструкций и деталей, для очистки воздуха, в медицине и фармацевтической промышленности и т. д. О том, что такое ультразвуковые волны, о способах их получения, свойствах и применении и рассказывает книга специалиста в области ультразвуков профессора доктора химических наук Бориса Борисовича Кудрявцева «О неслышимых звуках».