Работа с данными в любой сфере - [9]

Шрифт
Интервал

об игре, – машины неизбежно будут поставлять более точные данные, чтобы подтвердить или опровергнуть любые заявления соперников. Судья может быть данью традиции, которая делает опыт более личностным или захватывающим прямо сейчас, но, на мой взгляд, ностальгия, связанная с профессией, не означает, что она будет востребована вечно.

Даже после того, как выяснилось, насколько всепоглощающими являются данные, некоторые все еще могут надеяться на то, что наука о данных не повлияет на их бизнес в ближайшее время. В конце концов, нужно время, чтобы что-то произошло. Но думать таким образом было бы большой ошибкой, потому что это отрицало бы принцип закона Мура.

Закон Мура

Закон Мура – это закон прогнозирования. Предложенный соучредителем Intel Гордоном Муром в 1965 г., он в первую очередь касался ожидаемого со временем увеличения числа транзисторов (устройств, используемых для управления электрическим током) на квадратный дюйм в интегральных схемах (например, компьютерных микросхемах, микропроцессорах, материнских платах). Было замечено, что число этих транзисторов примерно удваивается каждые два года, и закон утверждал, что тенденция будет продолжаться. На сегодняшний день это подтвердилось[8].

В восприятии непрофессионала это означает, что, если вы пойдете в свой местный компьютерный магазин сегодня и купите компьютер за £1000, а через два года приобретете еще один тоже за £1000 в том же магазине, вторая машина будет в два раза мощнее, хотя она стоит столько же.

Многие применили этот закон к растущему как грибы количеству достижений в области науки о данных. Она является одной из самых быстроразвивающихся академических дисциплин, и занимающиеся ею профессионалы используют все более изощренные способы, чтобы найти новые средства для сбора данных, построения экономичных систем их хранения и разработки алгоритмов, которые превращают все эти порции больших данных в ценные идеи. Доводилось ли вам когда-либо чувствовать, что технологии движутся вперед так быстро, что вы не успеваете идти в ногу со временем? Тогда подумайте об аналитиках данных. Они играют в салочки с технологией, которая еще даже не изобретена.

Кейс: Siri

В качестве примера рассмотрим развитие технологии распознавания речи. Создатели Siri Даг Киттлаус, Адам Чейер и Том Грубер разработали умного личного помощника задолго до того, как технология стала достаточно зрелой, чтобы можно было реализовать идеи и вывести их на рынок. Авторы Siri создали инструменты и алгоритмы для работы с имевшимися у них данными, чтобы поддерживать технологию распознавания речи, которая тогда еще не была изобретена.

Однако они знали, что, хотя было невозможно использовать программное обеспечение с имевшейся в то время технологией, в конечном итоге запуск Siri станет возможным, нужно лишь подождать, пока технология выкристаллизуется. Короче говоря, они уловили технологические тенденции.

Концепцией, которую создатели Siri использовали для своих прогнозов, служил закон Мура. И это невероятно важно для науки о данных. Закон Мура применяется к многим технологическим процессам и является необходимым правилом при рассмотрении и принятии деловых решений и реализации проектов; мы вернемся к его обсуждению в главе 3 «Мышление, необходимое для эффективного анализа данных».

Беспокойство ни к чему не приводит

Голливуд и индустрия развлечений в целом долгое время придерживались мрачной идеи, что использование данных и связанные с ними злоупотребления угрожают человечеству. Нам стоит задуматься над этой не предвещающей ничего хорошего фразой из фильма «2001: Космическая одиссея»: «Открой дверь модульного отсека, ЭАЛ», где ЭАЛ – технология искусственного интеллекта (ИИ) космического корабля – настолько усовершенствован, что решает не подчиняться команде человека и действовать согласно своим (превосходящим) суждениям. «Из машины», «Она», «Бегущий по лезвию», «Призрак в доспехах» – все эти фильмы посвящены воображаемым проблемам, с которыми могут столкнуться люди, когда технологии начнут развивать собственное сознание и предвидеть наши действия.

Но есть, с моей точки зрения, еще одна область, где злонамеренное применение данных – имеющее значительно больше общего с злоупотреблениями людей, чем роботов, – гораздо более вероятно и неотвратимо. Речь идет о конфиденциальности. С вопросами конфиденциальности связаны многие наши взаимодействия в интернете. Люди могут оставаться анонимными, но информация о них всегда будет где-то собираться – и использоваться. Даже если эти данные лишены характерных индикаторов, отсылающих к тому или иному индивидууму, некоторые могут спросить: «Правильно ли, что такие данные вообще собирают?»

Ваш онлайн-след

Читатели, которые пользовались интернетом в 1990-х гг., знакомы со словом «аватар» – довольно безобидное изображение, которое мы выбирали для представления себя на онлайн-форумах. Сегодня термин «аватар» используется для описания чего-то гораздо более широкого. Теперь он означает нашего неосязаемого двойника в виртуальном мире, массив данных о нас, составленный на основе наших заданных поисков, выбора и покупок, которые мы делаем в интернете, и всего, что мы публикуем в Сети, от текста до изображений. Такие данные являются потенциальным золотым дном, неиссякаемым источником информации для кредитных агентств и компаний-агрегаторов, которые затем могут использовать эти сведения для продажи другим.


Рекомендуем почитать
Записки парасистемного программиста

Методический материал для разработчика ПО. Статьи полезные с исторической точки зрения для всех любителей современных теорий организации программного производства, так еще и актуальность до сих пор не потеряна. Правда примеры основаны на реалиях тех времен (1984 год или около того), но это почти не помеха — аналоги в современной практике находятся без труда. В общем, приобщайтесь к истокам!


Выразительный JavaScript

В процессе чтения вы познакомитесь с основами программирования и, в частности, языка JavaScript, а также выполните несколько небольших проектов. Один из самых интересных проектов — создание своего языка программирования.


Темные данные. Практическое руководство по принятию правильных решений в мире недостающих данных

Человечество научилось собирать, обрабатывать и использовать в науке, бизнесе и повседневной жизни огромные массивы данных. Но что делать с данными, которых у нас нет? Допустимо ли игнорировать то, чего мы не замечаем? Британский статистик Дэвид Хэнд считает, что это по меньшей мере недальновидно, а порой – крайне опасно. В своей книге он выделяет 15 влияющих на наши решения и действия видов данных, которые остаются в тени. Например, речь идет об учете сигналов бедствия, которые могли бы подать жители бедных районов, если бы у них были смартфоны, результатах медицинского исследования, которые намеренно утаили или случайно исказили, или данных, ставших «темными» из-за плохого набора критериев для включения в выборку.


Создание инструмента научных исследований на основе XML: Проблемы и методология

"В своем докладе я опишу процесс создания электронного исследовательского инструмента, имеющего в своей основе печатный библиографический указатель, который предназначен для использования в научных целях, а также проанализирую некоторые трудности, с которыми мы столкнулись в ходе реализации данного проекта, и расскажу об избранных нами вариантах решения возникших проблем.".


Справка по SQL

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Firebird. Руководство разработчика баз данных

Рассмотрены вопросы, необходимые разработчику для создания клиент-серверных приложений с использованием СУБД Firebird, явившейся развитием СУБД Borland Interbase 6. Содержится обзор концепций и моделей архитектуры клиент/сервер, а также практические рекомендации по работе с клиентскими библиотеками Firebird. Детально описаны особенности типов данных SQL, язык манипулирования данными (Data Manipulation Language, DML), а также синтаксис и операторы языка определения данных ( Data Definition Language, DDL)