Пятьсот двадцать головоломок - [21]
210. Работая в одиночку. Альфред и Бил вместе могут выполнить некоторую работу за 24 дня. Если Альфред может сделать только ⅔ того, что делает Бил, то за сколько дней каждый из них выполнит ту же работу в одиночку?
211. «Бумеранг». Я называю «бумерангом» один из самых древних видов арифметических головоломок. Кого-нибудь просят загадать число и после ряда вычислений сказать результат. Услышав результат, тот, кто задавал вопрос, немедленно сообщает задуманное число. Существуют согни различных вариантов этой головоломки.
Самый старый из зафиксированных письменно примеров этой головоломки встречается, по-видимому, в «Арифметике» Никомаха, который умер около 120 г. Он просит вас задумать любое целое число от 1 до 100 и затем разделить его последовательно на 3, 5 и 7, сообщая каждый раз остаток. Получив эти сведения, он немедленно отгадывает задуманное вами число.
Не смог бы читатель придумать простой способ, позволяющий в уме совершить этот подвиг? Если нет, то, может быть, ему будет интересно узнать, как это делал древний математик.
212. Пчелы Лонгфелло. Когда Лонгфелло был профессором новых языков в Гарвардском колледже, он часто развлекался, задавая своим студентам более или менее простые арифметические головоломки. Вот одна из них.
Если ⅕ пчелиного роя полетела на цветы ладамбы, ⅓ — на цветы слэндбары, утроенная разность между этими числами полетела на дерево, а одна пчела продолжала летать между ароматными кетаки и малати, то сколько всего было пчел?
213. Лилавати. Вот небольшая задачка, заимствованная из «Лилавати» (1150 г.) Бхаскары[14].
«Прекрасная дева с лучистым взором назвала мне число. Если это число умножить на 3, прибавить ¾ произведения, разделить на 7, уменьшить на уз частного, умножить на себя, уменьшить на 52, извлечь квадратный корень, прибавить 8, разделить на 10, то получится 2».
При правильном подходе решить эту задачу, как и многие другие старинные головоломки, невероятно легко.
214. Задача печатника. Некий печатник получил годовой заказ на 10 000 афиш в месяц. Разумеется, в январе на афише должно было стоять слово «ЯНВАРЬ», а в феврале — «ФЕВРАЛЬ» и т. д. Таким образом, необходимо было напечатать 10 000 афиш с надписью «ЯНВАРЬ», 10 000 афиш с надписью «ФЕВРАЛЬ», 10 000 афиш с надписью «МАРТ» и т. д. Литеры, которыми набирались названия месяцев, отливались по особому заказу и стоили дорого, поэтому печатнику хотелось купить их как можно меньше, чтобы часть литер, использованных при наборе одного месяца, можно было бы использовать и при наборе других месяцев, а запаса хватило бы на все месяцы года.
Сколько различных литер он должен купить? Разумеется, все слова печатаются прописными буквами, как и показано выше.
215. Пчелиный рой. Вот пример изящной формы, в которую уже упоминавшийся выше Бхаскара облек небольшую головоломку.
«Квадратный корень из половины общего количества пчел в рое вылетел на куст жасмина;
всего роя осталось на месте; одна пчелка летает вокруг своего возлюбленного, жужжащего внутри лотоса, куда он залетел ночью, привлеченный ароматом этого цветка, который ныне стал его темницей. Скажи мне число пчел в рое».216. Слепота у летучих мышей. Один натуралист, пытаясь мистифицировать полковника Крэкхэма, сообщил ему, что изучал вопрос о слепоте у летучих мышей.
— Я обнаружил, — сказал он, — что закоренелая привычка летучих мышей спать днем в темных углах и вылетать только по ночам привела к распространению у них слепоты, хотя некоторые особи хорошо видели обоими или одним глазом. Две из исследуемых мною мышей видели правым глазом, три — левым, четыре не видели левым и пять не видели правым глазом.
Могли бы вы подсчитать наименьшее число летучих мышей, которых пришлось осмотреть натуралисту, чтобы получить такие результаты?
217. Зверинец. В бродячем зверинце было два каприза природы: четырехногая птица и шестиногий теленок. Одного посетителя спросили, сколько всего там показывали птиц и животных, на что он ответил:
— Всего 36 голов и 100 ног. Остальное вы можете узнать сами.
Сколько же там было птиц и зверей?
218. Угон овец. Грабители угнали ⅓ стада овец и ⅓ овцы. Другая шайка угнала ¼ оставшихся овец и ¼ овцы. Затем третья шайка грабителей угнала ⅕ остатка и еще ⅗ овцы, после чего в стаде осталось 409 овец.
Сколько овец было в стаде первоначально?
219. Дележ овец. Некий австралийский фермер, умирая, оставил своих овец трем сыновьям. Альфред должен получить на 20% больше, чем Джон, и на 25% больше, чем Чарлз. Доля Джона составляет 3600 овец.
Сколько овец получит Чарлз? Возможно, что читателю удастся решить задачу за несколько секунд.
220. Арифметика в такси. Водитель такси не отличался вежливостью, и возмущенный мистер Уилкинс попросил его назвать свой номер.
— Вы хотите узнать мой номер? — сказал водитель. — Что же, пожалуйста. Если вы разделите его на 2, 3, 4, 5 или 6, то получите в остатке 1, а на 11 он разделится без остатка. Скажу еще, что из всех водителей, которые могли бы сказать о своем номере то же самое, мой номер самый маленький.
Какой номер был у водителя?
221. Аренда. «Как-то я обсуждал со своим другом вопрос об аренде, — сказал полковник Крэкхэм, — и он сообщил мне, что его земля сдана в аренду на 99 лет. Я спросил друга, сколько лет из этого срока уже истекло, надеясь получить прямой ответ. Но он сказал мне, что ⅔ прошедшего времени равны ⅘ оставшегося срока и что ответ я должен найти сам».
Сборник, принадлежащий перу одного из основоположников занимательной математики Генри Э. Дьюдени, содержит увлекательные задачи на темы «Кентерберийских рассказов» Д. Чосера, а также всевозможные логические, арифметические, геометрические и алгебраические головоломки.Книга несомненно доставит большое удовольствие всем любителям этого жанра.
Сборник принадлежит перу одного из основоположников занимательной математики Генри Э. Дьюдени. Кроме беллетризованных задач на темы «Кентерберийских рассказов» Д. Чосера, в него вошло более 150 других логических, арифметических, геометрических, алгебраических задач и головоломок.Книга доставит удовольствие всем любителям занимательной математики.
Хотя в природе всегда существовали объекты с неравномерной и даже хаотичной структурой, ученые долгое время не могли описать их строение математическим языком. Понятие фракталов появилось несколько десятков лет назад. Именно тогда стало ясно, что облака, деревья, молнии, сталактиты и даже павлиний хвост можно структурировать с помощью фрактальной геометрии. Более того, мы сами в состоянии создавать фракталы! В результате последовательного возведения числа в квадрат появляется удивительное по красоте и сложности изображение, которое содержит в себе новый мир…
«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре) Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!
Таблицу умножения перестроена, сделана новая картинка. Объём материала для запоминания сокращён примерно в 5 раз. Можно использовать самую сильную – зрительную память (в прежних картинках таблицы это невозможно). Ученики запоминали таблицу за один – полтора месяца. В ней всего 36 "домиков". Умножение и деление учаться одновременно. Книга обращена к детям, объяснение простое и понятное. Метод позволяет намного облегчить деление с остатком и сокращение дробей. Метод признан Министерством Просвещения России как полезная инновация (Муниципальное образование, инновации и эксперимент 2013/1)
Для этой книги Алекс Беллос собрал 125 головоломок, созданных за прошедших два тысячелетия, вместе с историями об их происхождении и влиянии. Он выбрал самые захватывающие, увлекательные и стимулирующие работу мысли задачи. Эти головоломки можно считать математическими только в самом широком смысле: их решение требует логического мышления, но не требует глубоких знаний математики. Все эти задачи происходят из Китая, средневековой Европы, викторианской Англии и современной Японии, а также из других времен и мест. Это книга для тех, кто интересуется математикой и логикой и любит разгадывать головоломки. На русском языке публикуется впервые.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Тим Глинн-Джонс — автор этой необычной книги — знает о цифрах все. Вы убедитесь в этом, прочитав его занимательные истории «от нуля до бесконечности». С их помощью вы перестанете опасаться числа 13, разберетесь, какую страшную тайну хранит в себе число 666, узнаете, чем отличается американский миллиард от европейского и почему такие понятия как Время, Вселенная и Смерть, можно определить только через бесконечность.