Путевые заметки рассеянного магистра - [18]

Шрифт
Интервал

— Так вот, — продолжал Олег, — если любой из углов треугольника меньше 120 градусов, то искомая точка находится внутри треугольника.

— Как её искать? — спросил Нулик.

— Надо найти такую точку, чтобы из неё все три стороны треугольника были видны под одним и тем же углом в 120 градусов.

— Чепуха! — фыркнул президент. — Как это стороны могут быть видны под углом?

— Очень просто, — возразил Олег, не обратив никакого внимания на убийственную иронию Нулика. — Если из точки провести две прямые к концам какого-нибудь отрезка, то угол между этими прямыми и называется углом, под которым виден этот отрезок. Итак, если один из углов треугольника равен 120 градусам, то искомая точка будет как раз вершиной этого угла. Вот почему Единичка сказала, что предложение Магистра неверно. Она соединила на карте точки, где находятся дома А, Б и В, и увидела, что в полученном треугольнике каждый из углов меньше 120 градусов.

— Понятно, — кивнул Сева. — Но если мальчиков будет не три, а четыре или ещё больше? Где надо будет установить станцию тогда?

— Вопрос интересный, — сказал Олег, — он имеет большое экономическое значение. Ведь и телефонные провода, и трубы, и дороги надо проводить так, чтобы на них ушло как можно меньше материала и труда.

— Олег — экономист! — сострил президент.

Олег поклонился:

— Ничего не имею против такого звания. — Но проблемой Штейнера занимаются всё-таки не экономисты, а математики, — сказал я. — Есть в математике такой раздел — вариационное исчисление. Очень трудный, между прочим, раздел. Вариационное исчисление исследует многочисленные варианты решений и находит при этом самый выгодный. Ясно?

— Ясно-то ясно, — озабоченно отозвался президент, — но ни о каком исследовании вариантов не может быть и речи. На это уйдёт слишком много времени, а между тем Пончик и Кузя…

— Ладно, — сжалилась Таня, — так и быть, поторопимся. Сева, ты, кажется, хотел разобраться в вопросе о возведении в четвёртую степень?

— Сейчас, сейчас, — начал Сева нарочито медленно (он не мог отказать себе в удовольствии поддразнить президента). — Леди и джентльмены! Как вы помните, благородный рыцарь ордена Рассеянных магистров пытался в уме возвести в четвёртую степень некое покрытое тайной число. И хотя число было основательно засекречено, проницательная Единичка немедленно обнаружила, что ответ у Магистра неверен. Вы спросите, как она догадалась? Охотно открою её секрет. Магистр получил в ответ число… неважно теперь какое, важно то, что оно оканчивалось двойкой. Но ни одна четвёртая степень числа на двойку оканчиваться не может! Так же, впрочем, как и на тройку, и на семёрку, и на восьмёрку, и на девятку. Четвёртая степень любого числа оканчивается либо на 1, либо на 6, а ещё — на 5 и на 0. При этом прошу вас отметить, что подобным капризным образом ведут себя не только четвёртые степени, но и все степени, кратные четырём, — восьмая, двенадцатая, шестнадцатая и так далее!

— Вот здо́рово! — воодушевился Нулик, сразу позабыв о Пончике и Кузе. — И другие степени тоже ведут себя по-особому?

— Без всякого сомнения, — величественно ответствовал Сева. — Степени своенравны, но любят порядок и никогда от него не отступают. Вот, например, все пятые степени оканчиваются той же цифрой, что и их основание. Например, 2 в пятой степени равно 32; 4 в пятой степени — 1024 и так далее. Тому же правилу подчиняются девятая, тринадцатая, семнадцатая и многие другие степени. Арифметика педантична. Не то что Магистр. Вот почему он так часто ошибается. Я кончил!

— Уже? — искренне огорчился президент. — Жаль, так было интересно.

— А Пончик? — спросил Сева. — Уж не хочешь ли ты сказать, как древний философ: «Пончик мне друг, но математика дороже»?

Вспомнив о Пончике, Нулик снова заторопился. К счастью, у нас оставался всего один неразобранный вопрос, однако желающих высказаться почему-то не находилось. А в таких случаях — вы уже знаете — очередь за мной.

— Не стану злоупотреблять вашим драгоценным временем, — сказал я, невольно подражая высокопарному стилю Севы, — но всё же для ясности должен остановиться на вопросе о «Стальных мускулах» несколько подробней. Как вы помните, друг наш был удивлён, не увидев в «Стальных мускулах» ни боксёров, ни борцов, ни штангистов. Пропускаю мимо ушей замечание Магистра о водном хоккее, — на то он и Магистр Рассеянных Наук! Разберёмся-ка лучше в том, что это за «Стальные мускулы», кто такой заведующий-упругист и, наконец, права ли была Единичка, когда решила повесить на маленький гвоздик огромную гирю. Как я понимаю, Магистр с Единичкой попали в лабораторию сопротивления материалов.

— Чего-чего? — переспросил президент.

— Есть такая наука — сопротивление материалов, — объяснил я.

— А чем она занимается?

Я вынул из кармана карандаш и сделал вид, что собираюсь его переломить.

— Видите, карандаш не хочет ломаться, он сопротивляется моим усилиям. Значит, и в нём тоже заключена какая-то сила, иначе он не смог бы мне сопротивляться. Однако (тут я сломал карандаш) у меня силёнок всё-таки побольше, чем у деревянного карандашика. Но вот если бы этот карандашик был сделан не из дерева, а из стали, тут уж не хватило бы сил у меня. Значит, каждый материал сопротивляется по-своему, у каждого свои силы сопротивления. Вот наука сопротивления материалов и изучает эти внутренние, скрытые в материале силы. Не зная их, не построить ни путной машины, ни здания, ни моста. Они будут разрушаться тогда, когда этого никто не ожидает.


Еще от автора Владимир Артурович Левшин
Три дня в Карликании

Рассказ в веселой и доступной форме детям об арифметике.


Магистр Рассеянных Наук

В сборник вошли повести Владимира Лёвшина о приключениях незадачливого путешественника Магистра Рассеянных Наук и его неизменной спутницы Единички: «Диссертация Рассеянного Магистра», «Путевые заметки Рассеянного Магистра» и «В поисках похищенной марки». Герой книги — пылкий поклонник математики, неутомимый путешественник и путаник Магистр Рассеянных Наук — колесит по свету в погоне за математическими загадками и казусами. Он то и дело совершает ошибки, которые анализируют школьники Клуба «Рассеянного Магистра».


Стол находок утерянных чисел

Книга о свойствах чисел и их закономерностях. Действие происходит в сказочном математическом городе, где в столе находок разыскивают числа по их приметам. Жители города Энэмска знают — числа живут особенной жизнью и дружба с ними сулит приятные неожиданности и нечаянные открытия. Разумеется тем, кто знает их законы.Многие, наверное, читали книги Левшина В. и Александровой Э. «Путешествие по Карликании и Аль-Джебре», «Фрегат капитана Единицы», «Магистр Рассеянных Наук» и другие, которые привили любовь к математике не одному человеку.


В лабиринте чисел

Заблудиться в лабиринте чисел очень просто. Но если вашим проводником согласится стать сама многоуважаемая Арифметика, путешествие удастся на славу. Каждая остановка, а их будет тридцать две (по числу букв алфавита) подарит вам незабываемые впечатления, а задачи, которые Арифметика иногда будет подкидывать своим спутникам, внесут ещё большее разнообразие в этот и без того прихотливый маршрут. Замечательная книга о приключениях мальчика Чита в Лабиринте Чисел и о его проводнице — Арифметике. В увлекательной форме знакомит детей со многими математическими и логическими понятиями.


Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники.


Искатели необычайных автографов

Любитель изящной словесности Филарет Филаретович Филаретов, или сокращенно Фило, и признающий только красоту математики Матвей Матвеевич Матвеев, или сокращенно Мате, отправляются в путешествие по прошедшим эпохам в поисках автографов великих писателей и математиков. Каково же их удивление, когда оказывается, что они разыскивают одних и тех же людей! На страницах этой удивительной книги вы повстречаетесь с Омаром Хайямом, Блезом Паскалем, Эратосфеном, Фибоначчи, Пифагором и многими другими великими людьми, которые, возможно, предстанут в новом, незнакомом для вас качестве.


Рекомендуем почитать
Паровоз

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Экологическое воспитание детей 5-6 лет

В данном методическом пособии, разработанном в соответствии с ФГТ, представлена непосредственно образовательная деятельность (НОД) по экологическому воспитанию детей 5-6 лет. Особое внимание уделено диагностике педагогического процесса по блокам «Растения», «Животные», «Человек», «Неживая природа». Широко представлена познавательно-исследовательская деятельность Пособие адресовано страшим воспитателям и педагогам ДОУ, родителям и гувернерам.


Мозаика из круп и семян

Используя различные крупы, а также семена овощей, фруктов, цветов, можно изготавливать чудесные оригинальные аппликации, панно, открытки к празднику.


Горизонты техники для детей, 1964 №11

Польский ежемесячный научно-популярный журнал для детей.


Горизонты техники для детей, 1964 №10

Польский ежемесячный научно-популярный журнал для детей.


Первоначала вещей

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Диссертация рассеянного магистра

Герой книги — пылкий поклонник математики, неутомимый путешественник и путаник Магистр Рассеянных Наук — колесит по свету в погоне за математическими загадками и казусами. Его рассказы, полные самых невероятных приключений и ещё более невероятных ошибок, развивают наблюдательность, совершенствуют математическую логику и убедительно подтверждают справедливость древней истины: на ошибках учатся.Для младшего школьного возраста.


Новые рассказы Рассеянного Магистра

Дорогие читатели?Если вы уже знакомы с незадачливым героем книги В Лёвшина "Магистр Рассеянных Наук", если уже сталкивались с бесчисленными ошибками и оговорками этого рассеянного математика, вам, вероятно, интересно будет узнать о его новых путешествиях и приключениях, а заодно снова встретиться с постоянными членами Клуба Рассеянного Магистра — Таней, Севой, Олегом и Нуликом.Если же Магистр Рассеянных Наук для вас лицо новое, не смущайтесь: эта книга — совершенно самостоятельная история о том, как Магистр возомнил себя великим сыщиком и отправился в далёкие страны вместе со своей неизменной спутницей Единичкой, а также с твёрдым намерением расследовать дерзкое преступлениеОсобая к вам просьба: читая рассказы отважного, но рассеянного путешественника, старайтесь не пропустить ни одной его несуразицы, ни одной оплошности.