Путеводитель для влюбленных в математику - [14]
К счастью, множество комплексных чисел уже содержит все квадратные корни из комплексных чисел. Посмотрим, как извлечь корень из мнимой единицы, не создавая новых сущностей.
Нам нужно найти такое комплексное число a + bi, что (a + bi) ² = i. Начнем с перемножения (a + bi) и (a + bi):
(a + bi) × (a + bi) = (a² – b²) + (2ab) i.
Теперь нам нужно приравнять это выражение к i = 0 + 1 × i. В результате мы получим: a² – b² = 0 и 2ab = 1.
Первое условие тождественно тому, что a = b или a = –b.
Если a = b и 2ab = 1, то 2a² = 1.
Таким образом,
Так как a = b, мы нашли два квадратных корня из мнимой единицы:
Проверьте, так ли это, возведя оба ответа в квадрат.
Если a = –b, решение будет таким же.
Итак, затратив некоторые усилия, мы показали, что извлечение квадратного корня из комплексного числа дает комплексное число, поэтому придумывать новые числа для извлечения корней не нужно.
А как насчет кубических корней? Кубический корень из числа c – это такое число x, что x³ = c. Вопрос: входит ли множество корней из комплексных чисел во множество комплексных чисел или нам нужно изобретать еще какие-нибудь новые числа[59]?
Уравнение x³ = c может быть записано иначе: x³ – c = 0. Сформулируем вопрос в общем виде: всякое ли полиномиальное уравнение[60] имеет решение среди комплексных чисел? Скажем, есть ли такое комплексное число x, что
3x⁵ + (2 – i) x⁴ + (4 + i) x³ + x – 2i = 0?
Принципиально важный факт в теории комплексных чисел состоит в том, что любое полиномиальное уравнение имеет комплексное решение! Об этом говорит основная теорема алгебры. На математическом языке данный тезис можно переформулировать так: поле комплексных чисел[61]алгебраически замкнуто.
Вот как звучит это важнейшее утверждение в строгой форме.
Теорема (основная теорема алгебры). Пусть d – положительное целое число и c>0, c>1, c>2, …, c>d – комплексные числа, причем c>d ≠ 0. Тогда существует такое комплексное число z, что
c>dz>d + c>d>– 1z>d>– 1 + … + c>2z² + c>1z + c>0 = 0.
Поле действительных чисел незамкнуто, потому что среди действительных чисел не всегда можно найти решение полиномиального уравнения с действительными коэффициентами (например, среди действительных чисел нет такого числа a, что a × a + 1 = 0. Доказательство общей теоремы алгебры состоит в том, что решение приведенного выше полиномиального уравнение находят в общем виде.
Глава 6
π
Число π завораживает человечество на протяжении многих поколений. Оно проникло в массовую культуру (например, стало названием фильма[62] и маркой одеколона[63]). Школьники отмечают День π и соревнуются, кто запомнит больше знаков числа π после запятой[64].
Пи – шестнадцатая буква греческого алфавита. В математике ею обозначают отношение длины окружности к ее диаметру. Длина окружности в π раз длиннее диаметра, или C = πd. Можно записать иначе: C = 2πr, где r – радиус окружности.
Площадь окружности можно вычислить по формуле S = πr².
С помощью числа π можно определить и площадь сферы – 4πr², а также объем шара –
Эти геометрические формулы не сообщают нам величину числа π. Начнем с того, что π больше 3. Нарисуем круг с радиусом 1, впишем в него равносторонний шестиугольник, а затем поделим его на равносторонние треугольники.
Очевидно, что стороны всех треугольников равны 1. Периметр шестиугольника равен 6. Длина окружности несколько больше, чем периметр шестиугольника. Таким образом, 2π > 6, следовательно, π > 3. На рисунке мы видим, что разница между периметрами двух фигур невелика. Значит, π немногим больше 3.
Дальше мы можем поступить наоборот – описать правильный шестиугольник вокруг окружности радиусом 1. Вновь поделим шестиугольник на шесть равных треугольников. Длина любой стороны каждого треугольника будет равна
(вы с легкостью поймете, почему это так, применив теорему Пифагора, о которой идет речь в главе 14; объяснение вы найдете в конце главы).Таким образом, периметр большого шестиугольника равен
Периметр окружности немного меньше. Следовательно,Дальше мы можем снова и снова вписывать в окружность и описывать вокруг нее правильные многоугольники со все бо́льшим количеством сторон. Когда мы дойдем до правильного 100-угольника, точность наших вычислений значительно повысится:
3,1410759… < π < 3,1426266…
В пределе, увеличивая число сторон вписанных и описанных правильных многоугольников до бесконечности, мы будем получать все более точное значение интересующего нас числа:
π = 3,141592653589793238462643383279502884…
Так чему же в точности равно число π? В главе 4 мы уже выяснили, что число
иррационально, то есть не может быть выражено через отношение двух целых чисел. Так же обстоит дело и с числом π. Школьников часто просят запомнить, что но это лишь приблизительное значение[65].Число π не так-то просто представить в виде ряда, но вот пара попыток:
В обоих случаях необходимо вести счет до бесконечности, но это не в наших силах. Мы можем остановиться после некоторого количества шагов и найти приблизительное значение интересующего нас числа.
Послевоенные годы знаменуются решительным наступлением нашего морского рыболовства на открытые, ранее не охваченные промыслом районы Мирового океана. Одним из таких районов стала тропическая Атлантика, прилегающая к берегам Северо-западной Африки, где советские рыбаки в 1958 году впервые подняли свои вымпелы и с успехом приступили к новому для них промыслу замечательной деликатесной рыбы сардины. Но это было не простым делом и потребовало не только напряженного труда рыбаков, но и больших исследований ученых-специалистов.
Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.
Монография посвящена проблеме самоидентификации русской интеллигенции, рассмотренной в историко-философском и историко-культурном срезах. Логически текст состоит из двух частей. В первой рассмотрено становление интеллигенции, начиная с XVIII века и по сегодняшний день, дана проблематизация важнейших тем и идей; вторая раскрывает своеобразную интеллектуальную, духовную, жизненную оппозицию Ф. М. Достоевского и Л. Н. Толстого по отношению к истории, статусу и судьбе русской интеллигенции. Оба писателя, будучи людьми диаметрально противоположных мировоззренческих взглядов, оказались “versus” интеллигентских приемов мышления, идеологии, базовых ценностей и моделей поведения.
Монография протоиерея Георгия Митрофанова, известного историка, доктора богословия, кандидата философских наук, заведующего кафедрой церковной истории Санкт-Петербургской духовной академии, написана на основе кандидатской диссертации автора «Творчество Е. Н. Трубецкого как опыт философского обоснования религиозного мировоззрения» (2008) и посвящена творчеству в области религиозной философии выдающегося отечественного мыслителя князя Евгения Николаевича Трубецкого (1863-1920). В монографии показано, что Е.
Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.
Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.