Противодействие беспилотным летательным аппаратам - [43]

Шрифт
Интервал

.

Для повышения помехозащищенности АП СРНС в БПЛА могут быть использованы следующие способы и средства[292]:

— использование дальномерных кодов повышенной точности, поступающих по «закрытым» каналам СРНС;

— одновременный прием и обработка в АП сигналов от различных СРНС (ГЛОНАСС, GPS, Galileo и т. д.);

— пространственная селекция сигналов СРНС;

— комплексирование АП с ИНС;

— предкорреляционная обработка смеси сигналов и помех;

— алгоритмическая посткорреляционная обработка сигналов;

— поляризационная селекция сигналов.

Из указанных способов, помимо комплексирования АП с ИНС (данный способ будет рассмотрен далее), наибольшее распространение получил способ пространственной селекции сигналов СРНС за счет установки на БПЛА фазированной антенной решетки (ФАР). Как показано в работе[293], наличие на БПЛА всего лишь 6 элементов в ФАР позволяет достаточно эффективно формировать «нули» диаграммы направленности антенны (ДНА) в направлении на наземные источники помех и «максимумы» ДНА ФАР — в направлении на космические аппараты СРНС, тем самым обеспечивая пространственную режекцию помех.

4.3.3. Особенности радиоэлектронного подавления интегрированной навигационной системы БПЛА, основанной на комплексировании данных микромеханических инерциальных систем и сигналов СРНС

Выше были рассмотрены навигационные системы самых простых малых БПЛА, основанные на приеме и обработке сигналов СРНС. На более сложных БПЛА устанавливаются элементы автономной навигационной системы — акселерометры, гироскопы, барометры, лазерные высотомеры и т. д. Общепринятой нормой точности авиационных инерциальных ИНС «средней точности» является ошибка счисления пути в 1,85 км за 1 ч полета. Такая точность достигается авиационными ИНС на основе лазерных или волоконно-оптических гироскопов. Однако масса таких ИНС составляет от 8 кг, что делает проблематичным их использование на малых и даже на средних БПЛА.

В результате на малых БПЛА устанавливается более простая ИНС, оснащённая микромеханическими датчиками движения — акселерометрами и гироскопами. Такая ИНС, без ее коррекции по сигналам СРНС, не в состоянии осуществлять автономное счисление пройденного пути ввиду высоких скоростей дрейфа гироскопических датчиков. Накапливаемая ошибка микромеханических ИНС, в условиях отсутствия корректирующих сигналов СРНС, за 1 мин составляет до 3 м по горизонтали и 2 м по вертикали. Таким образом, эти ИНС способны без сигналов СРНС поддерживать приемлемую точность полета на уровне 100–150 м в течении не более 10 мин. При этом, как правило, имеется ввиду поддержание режима прямолинейного полета без ускорений и маневров. Примерами таких образцов микромеханических ИНС могут являться устройства Geo-iNAV (масса порядка 3 кг). Таким образом на современном этапе развития навигационных систем малых БПЛА для счисления пути с приемлемой точностью требуется использование сигналов СРНС[294]. Дополнительными способами повышения автономности и точности навигационных систем БПЛА является установка барометра, радио- или лазерного высотомера. Приблизительный диапазон измерений простого барометрического высотомера для малых БПЛА до 9 км, точность 0,1 м. Диапазон измерений радиовысотомера до 700 м, точность по высоте 2–5%, точность по углу 0,25°[295]. Диапазон измерений лазерного высотомера 0,1-120 м (статические поверхности) и 2-40 м (движущиеся поверхности), разрешение 1 см, точность 0,1 м (объект с 70 % светоотражением при 20 °C)[296]. Это оборудование позволяет повысить точность определения координат за счет использования дополнительных каналов поступления навигационных данных, а также формировать профили автономного полета БПЛА по электронным картам местности содержащим барометрические данные или высотные профили подстилающей поверхности[297].

Особенности функционирования интегрированных навигационных систем БПЛА рассмотрены в работах[298].

В работе[299] показано, что стандартным режимом интегрированной навигационной системы БПЛА, является следующая иерархия обработки навигационных данных (по мере снижения значимости и приоритета источника навигационных данных): «ИНС — СРНС — ОЭС — барометр — радиовысотомер». В случае затрудненного приема сигналов СРНС навигационная система БПЛА переходит в режим «ИНС — ОЭС — барометр — радиовысотомер», причем в этом случае ОЭС может быть использовано как для автономного контроля полета по визуальным ориентирам, так и для организации прямого дистанционного управления оператором по визуальным данным от ОЭС. При отсутствии ОЭС на БПЛА навигационная система переходит в режим «ИНС — барометр — радиовысотомер», для полета по барометрической и электронной карте местности. При этом, как отмечается в работах[300], в настоящее время наблюдается уход от использования ОЭС для прямого управления БПЛА оператором, в направлении автономного использования ОЭС, а также других радиотехнических средств БПЛА, в режиме SLAM — режим автоматического одновременного построения карты местности в неизвестном пространстве и одновременного контроля текущего местоположения БПЛА, а также счисления пройденного пути.


Рекомендуем почитать
Юный техник, 2014 № 03

Популярный детский и юношеский журнал.


Юный техник, 2014 № 02

Популярный детский и юношеский журнал.


Юный техник, 2013 № 12

Популярный детский и юношеский журнал.


Юный техник, 2013 № 11

Популярный детский и юношеский журнал.


Поистине светлая идея. Эдисон. Электрическое освещение

Томас Альва Эдисон — один из тех людей, кто внес наибольший вклад в тот облик мира, каким мы видим его сегодня. Этот американский изобретатель, самый плодовитый в XX веке, запатентовал более тысячи изобретений, которые еще при жизни сделали его легендарным. Он участвовал в создании фонографа, телеграфа, телефона и первых аппаратов, запечатлевающих движение, — предшественников кинематографа. Однако нет никаких сомнений в том, что его главное достижение — это электрическое освещение, пришедшее во все уголки планеты с созданием лампы накаливания, а также разработка первой электростанции.


Юный техник, 2001 № 08

Популярный детский и юношеский журнал.