Пространства, времена, симметрии - [89]
Компактная простая группа Ли класса Е8 локально изоморфна группе движений эрмитовой эллиптической плоскости над тензорным произведением двух алгебр О.
Некомпактная вещественная простая группа Ли класса Е8 с характером -24 локально изоморфна группам движений эрмитовой гиперболической плоскости над тензорным произведением двух алгебр О и эрмитовой эллиптической плоскости над тензорным произведением алгебр О и О'.
Расщепленная простая группа Ли класса Е8 локально изоморфна группе движений эрмитовой эллиптической плоскости над тензорным произведением двух алгебр О'.
Проективные и неевклидовы пространства над неассоциативными алгебрами не могут иметь размерность больше 2, так как в этом случае теорема Дезарга равносильная ассоциативности алгебры, над которой построено пространство, является следствием аксиом сочетания проективной геометрии.
Вскоре после того как я прочел цикл лекций о геометриях групп Ли в Утрехте Фрейденталь написал мне, что, обсуждая мои лекции с Титсом они пришли к выводу, что мои геометрические интерпретации особых простых групп Ли невозможны, так как размерностей линейных представлений простых групп Ли классов F4, Е6, Е7 и Е8, определяемых моими интерпретациями, нет в списке линейных представлений этих групп, утановленном Картаном в 1913 г.
Я ответил Фрейденталю, что представления этих групп, определяемые моими интерпретациями, не являются линейными.
Выше я писал, что точки октонионной проективной плоскости можно
определять тремя октонионными координатами, принадлежащими к одному ассоциативному подтелу тела О, и поэтому точки октонионной проективной плоскости можно определять тремя октонионными координатами, находящимися в одном ассоциативном подтеле тела О и заданными с точностью до правого множителя, являющегося элементом того же подтела. Поэтому при проективных преобразованиях октонионной плоскости три координаты xi точек этой плоскости подвергаются некоторому автоморфизму тела О, который переводит их в три октониона f(X|), также принадлежащие к одному ассоциативному подтелу тела О, эти три октониона подвергаются линейному преобразованию с помощью октонионной матрицы 3-го порядка, полученной "проектированием" матрицы группы, представляющей группу проективных преобразований октонионной плоскости, на то подтело, к которому принадлежат октонионы f(Xi).
Движения октонионной эрмитовой эллиптической определяются таким же образом, но матрица третьего преобразующая октонионы f(xi), получается "проектированием" октонионной матрицы 3-го порядка.
Координаты точек 2-мерных эрмитовых эллиптических и гиперболических плоскостей, группы движений которых являются особыми простыми группами Ли рангов 4, 6, 7 и 8, а также сами движения этих групп, определяются аналогично.
Образы симметрии компактных особых простых групп Ли имеют следующий вид.
В 6-мерном G-эллиптическом пространстве имется только один вид образов симметрии - точки.
В октонионной эрмитовой эллиптической плскости имеются два вида образов симметрии - точки и нормальные кватернионные 2-цепи, определяемые аналогично комплексным нормальным n-цепям кватернионного пространства.
В эрмитовой эллиптической плоскости над тензорным произведением алгебр C и О имеются четыре вида образов симметрии - точки, октонионные нормальные 2-цепи, комплексно -кватернионные 2-цепи и нормальные 2-бицепи. В этом случае нормальные 2-цепи определяются переходами от поля C к полю R и от тела О к телу H в одном из сомножителей тензорного произведения, нормальные 2-бицепи определяются такими же переходами в обоих сомножителях тензорного произведения.
плоскости порядка, унитарной
В эрмитовой эллиптической плоскости над тензорным произведением алгебр H и О имеются также четыре вида образов симметрии - точки, комплексно-октонионные нормальные 2-цепи, кватернионно- кватернионные 2-цепи и нормальные 2-бицепи. В этом случае нормальные 2-цепи определяются переходами от тела H к полю C и от тела О к телу H в одном из сомножителей тензорного произведения, нормальные 2-бицепи
определяются такими же переходами в обоих сомножителях тензорного произведения.
В эрмитовой эллиптической плоскости над тензорным произведением двух алгебр О имеются три вида образов симметрии - точки, кватернионно-октонионные 2-цепи и нормальные 2-бицепи. В этом случае нормальные 2-цепи определяются переходом от тела О к телу H в одном из сомножителей тензорного произведения, нормальные 2-бицепи определяются таким же переход в обоих сомножителях тензорного произведения.
Принципы двойственности и тройственности
Принцип двойственности n-мерной вещественной проективной геометрии связан с двусторонней симметрией диаграммы Дынкина простой группы класса An. Соглацно этому принципу гиперплоскости и m-мерные плоскости n-мерного пространства изображаются точки и (п-т-1)-мерные плоскости некоторого другого проективного прпстранства той же размерности.
Эта внутренняя симметрия в группе была ясна Э.Картану задолго до появления диаграммы Дынкина. Еще в 1925 г. Картан опубликовал статью "Принцип двойственности и теория простых и полупростых групп", в которой он обобщил принцип двойственности для простых групп Ли класса А на простые группы класса Dn и на простую группу Ли класса Е6. Диаграммы Дынкина этих групп также обладают двусторонней симметрией. В случае групп класса Dn двойственными образами являются плоские образующие максимальной размерности абсолюта, принадлежащие к двум разным семействам.
Авторы обратились к личности экс-президента Ирака Саддама Хусейна не случайно. Подобно другому видному деятелю арабского мира — египетскому президенту Гамалю Абдель Насеру, он бросил вызов Соединенным Штатам. Но если Насер — это уже история, хотя и близкая, то Хусейн — неотъемлемая фигура современной политической истории, один из стратегов XX века. Перед читателем Саддам предстанет как человек, стремящийся к власти, находящийся на вершине власти и потерявший её. Вы узнаете о неизвестных и малоизвестных моментах его биографии, о методах руководства, характере, личной жизни.
Борис Савинков — российский политический деятель, революционер, террорист, один из руководителей «Боевой организации» партии эсеров. Участник Белого движения, писатель. В результате разработанной ОГПУ уникальной операции «Синдикат-2» был завлечен на территорию СССР и арестован. Настоящее издание содержит материалы уголовного дела по обвинению Б. Савинкова в совершении целого ряда тяжких преступлений против Советской власти. На суде Б. Савинков признал свою вину и поражение в борьбе против существующего строя.
18+. В некоторых эссе цикла — есть обсценная лексика.«Когда я — Андрей Ангелов, — учился в 6 «Б» классе, то к нам в школу пришла Лошадь» (с).
У меня ведь нет иллюзий, что мои слова и мой пройденный путь вдохновят кого-то. И всё же мне хочется рассказать о том, что было… Что не сбылось, то стало самостоятельной историей, напитанной фантазиями, желаниями, ожиданиями. Иногда такие истории важнее случившегося, ведь то, что случилось, уже никогда не изменится, а несбывшееся останется навсегда живым организмом в нематериальном мире. Несбывшееся живёт и в памяти, и в мечтах, и в каких-то иных сферах, коим нет определения.
Патрис Лумумба стоял у истоков конголезской независимости. Больше того — он превратился в символ этой неподдельной и неурезанной независимости. Не будем забывать и то обстоятельство, что мир уже привык к выдающимся политикам Запада. Новая же Африка только начала выдвигать незаурядных государственных деятелей. Лумумба в отличие от многих африканских лидеров, получивших воспитание и образование в столицах колониальных держав, жил, учился и сложился как руководитель национально-освободительного движения в родном Конго, вотчине Бельгии, наиболее меркантильной из меркантильных буржуазных стран Запада.
Результаты Франко-прусской войны 1870–1871 года стали триумфальными для Германии и дипломатической победой Отто фон Бисмарка. Но как удалось ему добиться этого? Мориц Буш – автор этих дневников – безотлучно находился при Бисмарке семь месяцев войны в качестве личного секретаря и врача и ежедневно, методично, скрупулезно фиксировал на бумаге все увиденное и услышанное, подробно описывал сражения – и частные разговоры, высказывания самого Бисмарка и его коллег, друзей и врагов. В дневниках, бесценных благодаря множеству биографических подробностей и мелких политических и бытовых реалий, Бисмарк оживает перед читателем не только как государственный деятель и политик, но и как яркая, интересная личность.