Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике - [97]

Шрифт
Интервал

Чтобы сделать некое наглядное пособие по этой теме, я попросил математическую программу Mathematica 4, которой я пользуюсь, создать случайную эрмитову матрицу размером 269×269 и вычислить ее собственные значения (рис. 18.2). Причина, по которой выбрано число 269, станет ясной очень скоро. Mathematica, которая не перестает меня удивлять, справилась с задачей в мгновение ока. Все 269 собственных значений попали в интервал от −46,207887 до 46,3253478. Моя идея заключалась в том, чтобы нанизать их, как бусинки, на прямую, тянущуюся от −50 до +50, чтобы они висели там, как дождевые капли на проволочной ограде, а мы, глядя на них, смогли увидеть, имеется ли какой-нибудь порядок в распределении интервалов между ними. Однако это оказалось неосуществимым в пределах книжной страницы, поэтому пришлось порезать прямую на десять отрезков (от −50 до −40, от −40 до −30 и т.д.) и поместить эти отрезки один над другим. В результате получился рисунок 18.2.

Рисунок 18.2. Собственные значения случайной эрмитовой матрицы размера 269×269.

Никакого явного закона в распределении интервалов не просматривается. Хочется сказать, что они случайны. Но нет! На рисунке 18.3 показаны 269 чисел, выбранных совершенно случайно в интервале от 0 до 10 и изображенных тем же образом. Сравнение рисунков 18.2 и 18.3 позволяет увидеть, что собственные значения случайной матрицы раскиданы по прямой не случайным образом. На рисунке 18.2 заметен эффект отталкивания, тогда как для случайного разброса на рисунке 18.3 мы видим, что имеется большее по сравнению с распределением собственных значений число пар, расположенных достаточно близко друг к другу (а потому, неизбежно, и большее количество тех, что сидят дальше друг от друга). Хотя собственные значения на рисунке 18.2 и отказываются следовать какому-нибудь заметному глазу порядку (в конце концов, они же возникли из случайной матрицы!), они все же изо всех сил стараются сохранять дистанцию между собой. Напротив, чисто случайная точка, судя по всему, совсем не возражает, если ее прижмут к другой случайной точке.

Рисунок 18.3. Случайные интервалы между числами: 269 случайных чисел в интервале от 0 до 10.

Позвольте ввести три профессиональных термина, имеющие прямое отношение к обсуждаемому вопросу. Множество случайных (т.е. гауссовых случайных) эрмитовых матриц[164]>{A9} описанного типа называется во всей своей совокупности «гауссовым унитарным ансамблем» (ГУА). Точные статистические свойства интервалов в длинных неоднородных строках из чисел типа тех, что фигурируют в приведенных примерах, выражаются так называемой парной корреляционной функцией. А некоторое отношение, связанное с этой функцией и достаточно точно эту функцию характеризующее, называется формфактором.

Теперь я готов рассказать о знаменательной встрече, которая привела к постановке весьма странных и загадочных вопросов о Гипотезе Римана и впоследствии послужила «виновницей» тысяч исследовательских проектов.


III.

Эта встреча произошла в 1972 году, когда в Институте высших исследований в Принстоне случайно столкнулись специалист по теории чисел и физик. Специалистом по теории чисел был Хью Монтгомери — молодой американец, который тогда состоял в аспирантуре в кембриджском Тринити-колледже — колледже Г.X. Харди. Физиком же был Фримен Дайсон, который в то время являлся профессором в принстонском Институте высших исследований. Дайсон, которого мы уже упоминали, был известным физиком. В тот момент он еще не освоил параллельную профессию автора наводящих на размышления бестселлеров о происхождении и будущем человеческого рода.

Как раз незадолго до этого Хью Монтгомери исследовал интервалы между нетривиальными нулями дзета-функции. Это исследование не было частью программы по возможному доказательству Гипотезы Римана. Просто так случилось, что определенный результат о природе этих интервалов имел приложения в области теории чисел, для полей, несколько напоминающих поле а + b√2, с которым мы познакомились в главе 17.ii.[165] Этим и занимался Монтгомери. Вот как звучит эта история в его собственном изложении:

Я сделал эту работу еще будучи аспирантом. Я уже подготовил текст диссертации, но еще не защитился. В начале работы я не понимал, что все это означает. У меня было такое чувство, что здесь нечто скрывается, но я не знал, что именно, и это меня сильно тревожило.

Той весной 1972 года Хэролд Даймонд[166] организовал конференцию по аналитической теории чисел в Сент-Луисе. Я поехал на эту конференцию и сделал там доклад, а потом полетел в Энн-Арбор. К тому моменту я принял приглашение на работу в Энн-Арбор и собирался купить там дом. И действительно купил. Затем, на обратном пути в Англию, я остановился в Принстоне с целью поговорить с Атле [Сельбергом] о своей работе. Я побаивался, что, показав ему свои результаты, услышу в ответ: «Неплохо, Хью, но я доказал все это много лет назад». С моей души упал камень, когда он ничего такого не сказал. Он выказал некоторый интерес, но в целом достаточно поверхностный.

В тот же день вечером мы вместе с Чоула[167] отправились на чай в Фалд-Холл. Посреди комнаты я увидел Фримена Дайсона. Предыдущий год я провел в Институте и прекрасно знал Дайсона в лицо, однако никогда с ним не разговаривал. Чоула спросил: «Вы знакомы с Дайсоном?» Я ответил, что не знаком. Он сказал: «Давайте я вас представлю». Я сказал, что не надо, я как-то не настроен знакомиться с Дайсоном. Но Чоула не отставал и в конце концов поволок меня через всю комнату, чтобы представить Дайсону. Дайсон был очень вежлив и спросил меня, чем я занимаюсь. Я ответил, что изучаю разности между нетривиальными нулями дзета-функции Римана и что у меня есть гипотеза, что в выражении для функции распределения этих разностей под интегралом стоит 1 − (


Рекомендуем почитать
В поисках бесконечности

За последнее столетие одно из центральных мост в математической науке заняла созданная немецким математиком Г. Кантором теория бесконечных множеств, понятия которой отражают наиболее общие свойства математических объектов. Однако в этой теории был вскрыт ряд парадоксов, вызвавших у многих видных ученых сомнения в справедливости ее основ. В данной книге излагается в популярной форме, какими путями шла человеческая мысль в попытках понять идею бесконечности как в физике, так и в математике, рассказывается об основных понятиях теории множеств, истории развития этой науки, вкладе в нее русских ученых. Книга предназначена для широких кругов читателей, желающих узнать, как менялось представление о бесконечности, чем занимается теория множеств и каково современное состояние этой теории.


Математика на ходу

Как приобщить ребенка к математике и даже сделать так, чтобы он ее полюбил? Замечательные британские популяризаторы науки Роб Истуэй и Майк Эскью нашли веселый и легкий путь к детскому сердцу, превратив страшное пугало – математику – в серию увлекательных игр для детей от 4 до 14 лет. Пусть ваш ребенок исподволь овладевает математической премудростью, играя изо дня в день в угадайку, числовые прятки, двадцаточку и зеленую волну. Вы сможете играть за столом, в очереди к врачу, в магазине, на прогулке, используя подручный счетный материал: машины на стоянке, товары на полках супермаркета, мотоциклистов на дороге… И конечно, ничто не мешает вам переиначивать придуманные авторами математические забавы на свой лад, приспосабливая их ко вкусам и потребностям собственных детей.


Значимые фигуры

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.