Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике - [96]

Шрифт
Интервал

Как много существует энергетических уровней? Когда ядро переходит с уровня a на уровень b? Насколько энергетические уровни отстоят друг от друга и почему именно настолько? Подобная постановка вопроса по сути вводит задачу об исследовании атомного ядра в контекст более широкого круга задач — задач о динамических системах, т.е. о наборах частиц, каждая из которых во всякий момент времени занимает определенное положение в пространстве и имеет определенную скорость. По мере развития исследований в 1950-х годах стало ясно, что некоторые из наиболее интересных динамических систем, включая тяжелые ядра, слишком сложны и не поддаются точному математическому анализу в квантовой области. Число энергетических уровней оказалось слишком большим, а возможные конфигурации слишком многочисленны. Такая картина представляет собой самый устрашающий вариант «задачи многих тел» из классической (т.е. доквантовой) механики, где несколько объектов (например, планеты Солнечной системы) действуют друг на друга посредством гравитации.

Когда приходится иметь дело с таким уровнем сложности, точная математика сталкивается с целым рядом проблем, и поэтому исследования в этой области стали опираться на статистику. Если мы не можем определить, что произойдет точно, то, возможно, нам удастся выяснить, что скорее всего произойдет в среднем. Подобные статистические подходы широко развивались в классической механике начиная примерно с 1850 года, т.е. задолго до появления квантовой теории. В квантовом мире все устроено слегка по-другому, но там, по крайней мере, можно использовать значительный объем результатов, накопленных в классической теории. В конце 1950-х и начале 1960-х годов был создан основной аппарат и были разработаны статистические средства для анализа сложных квантовых динамических систем, подобных ядрам тяжелых элементов. Главными действующими лицами здесь были ядерные физики Юджин Вигнер и Фримен Дайсон. Главным же понятием оказались случайные матрицы.


II.

Случайная матрица — это именно то, что следует из ее названия: матрица, составленная из чисел, выбранных случайным образом. На самом деле не совсем случайным. Позвольте привести пример. Вот случайная (4×4)-матрица достаточно специального типа, важность которого я объясню чуть позже. Для экономии места будем все округлять до четырех знаков после запятой:

Первое, что можно заметить по поводу этой хитроумной штуковины, — данная матрица является эрмитовой: она обладает той самой как бы симметрией относительно главной диагонали, которая упоминалась в главе 17.v. Вспомним еще несколько фактов из той главы.

• С каждой (N×N)-матрицей связан многочлен степени N, называемый характеристическим многочленом.

• Нули характеристического многочлена называются собственными значениями матрицы.

• Сумма собственных значений называется следом матрицы (и равна сумме элементов, занимающих главную диагональ).

• В частном случае эрмитовых матриц все собственные значения вещественны и, следовательно, вещественны и коэффициенты характеристического многочлена, а также след.

Для матрицы из приведенного примера характеристический многочлен имеет вид

x>4 − 1,1836x>3 − 15,3446x>2 + 26,0868x − 2,0484,

а собственные значения равны −3,8729, 0,0826, 1,5675 и 4,0864. След равен 1,8636.

Посмотрим теперь повнимательнее на те числа, из которых состоит приведенная выше матрица. Числа, которые мы видим, — вещественные числа на главной диагонали и также вещественные и мнимые части комплексных чисел, занимающих места недиагональных элементов, — случайны в некотором специальном смысле (диагональные случайны с небольшим уточнением, которое будет объяснено ниже). Они выбраны случайным образом из нормального гауссова распределения — знаменитой «колоколообразной кривой», которая повсеместно возникает в статистике.

Рисунок 18.1. Нормальное гауссово распределение.

Представим себе стандартную колоколообразную кривую, нарисованную на разлинованном листе бумаги с очень мелкими делениями, так что под кривой расположены сотни квадратиков, образованных разметкой листа (рис. 18.1). Случайным образом выберем один из этих квадратиков; расстояние по горизонтали от него до вертикальной линии, проходящей через середину пика, представляет собой случайное число с нормальным гауссовым распределением. Вблизи самого пика скопилось намного больше этих квадратиков, чем под хвостами кривой, так что с гораздо более высокой вероятностью мы выберем число между +1 и −1, нежели число справа от +2 или слева от −2. Это же видно и из приведенной выше матрицы. (Впрочем, по некоторым техническим причинам элементы на ее главной диагонали в действительности представляют собой случайные гауссовские числа, умноженные на √2, а потому их значения — несколько большие, чем того следовало ожидать.)

Оказалось, что случайные гауссовы эрмитовы матрицы — только гораздо, гораздо большего размера — позволяют моделировать поведение определенных квантовых динамических систем. В частности, их собственные значения, как выяснилось, прекрасно соответствуют энергетическим уровням, которые наблюдаются в экспериментах. По этой причине в 1960-х годах эти собственные значения — собственные значения случайных эрмитовых матриц — стали объектом пристального изучения. В частности, очень интересными оказались интервалы между собственными значениями. Эти интервалы не распределены случайным образом. Например, два уровня оказываются близко друг к другу с гораздо меньшей вероятностью, чем можно было бы ожидать, исходя из случайного распределения. Это явление получило название «отталкивания» — энергетические уровни стараются разойтись по возможности дальше друг от друга, как длинная очередь из малосимпатичных друг другу людей.


Рекомендуем почитать
В поисках бесконечности

За последнее столетие одно из центральных мост в математической науке заняла созданная немецким математиком Г. Кантором теория бесконечных множеств, понятия которой отражают наиболее общие свойства математических объектов. Однако в этой теории был вскрыт ряд парадоксов, вызвавших у многих видных ученых сомнения в справедливости ее основ. В данной книге излагается в популярной форме, какими путями шла человеческая мысль в попытках понять идею бесконечности как в физике, так и в математике, рассказывается об основных понятиях теории множеств, истории развития этой науки, вкладе в нее русских ученых. Книга предназначена для широких кругов читателей, желающих узнать, как менялось представление о бесконечности, чем занимается теория множеств и каково современное состояние этой теории.


Математика на ходу

Как приобщить ребенка к математике и даже сделать так, чтобы он ее полюбил? Замечательные британские популяризаторы науки Роб Истуэй и Майк Эскью нашли веселый и легкий путь к детскому сердцу, превратив страшное пугало – математику – в серию увлекательных игр для детей от 4 до 14 лет. Пусть ваш ребенок исподволь овладевает математической премудростью, играя изо дня в день в угадайку, числовые прятки, двадцаточку и зеленую волну. Вы сможете играть за столом, в очереди к врачу, в магазине, на прогулке, используя подручный счетный материал: машины на стоянке, товары на полках супермаркета, мотоциклистов на дороге… И конечно, ничто не мешает вам переиначивать придуманные авторами математические забавы на свой лад, приспосабливая их ко вкусам и потребностям собственных детей.


Значимые фигуры

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.