Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике - [52]
В качестве добавления к этой главе еще чуть разовьем наш анализ, применив к выражению (9.2) два результата из тех, что были сформулированы в главе 7. Выпишем это выражение снова:
Все, что я собираюсь сделать, — это проинтегрировать обе части. Поскольку интеграл от 1/x равен ln x, я надеюсь, что не слишком злоупотреблю вашим доверием, если скажу (не останавливаясь на доказательстве), что интеграл от 1/(1 − x) равен −ln(1 − x). С правой частью равенства все еще проще. Можно просто интегрировать один член за другим, используя правила интегрирования степеней, сформулированные в таблице 7.2. Результат (впервые полученный сэром Исааком Ньютоном) имеет вид:
Будет чуть удобнее, если обе части умножить на −1:
Несколько странно, хотя для наших целей и несущественно, что выражение (9.3) верно при x = −1, тогда как выражение (9.2), с которого мы начали, при этом неверно. Действительно, при x = −1 выражение (9.3) дает следующий результат:
Отметим сходство с гармоническим рядом. Гармонический ряд… простые числа… дзета-функция…. Во всей этой области господствует логарифмическая функция.
Правая часть выражения (9.4) несколько своеобразна, хотя этого и не заметить невооруженным взглядом. Она в действительности является стандартной (из учебников) иллюстрацией того, насколько хитрой вещью являются бесконечные ряды. Этот ряд сходится к ln 2, что составляет 0,6931471805599453…, но только если складывать члены именно в этом порядке. Если складывать в другом порядке, ряд может сойтись к чему-нибудь другому — или может даже вообще не сойтись![76]
Рассмотрим, например, такую перестановку членов ряда: 1 − >1/>2 − >1/>4 + >1/>3 − >1/>6 − >1/>8 + >1/>5 − >1/>10 − …. То же самое, но с расставленными скобками: (1 − >1/>2) − >1/>4 + (>1/>3 − >1/>6) − >1/>8 + (>1/>5 − >1/>10) − …, т.е. >1/>2(1 − >1/>2 + >1/>3 − >1/>4 + >1/>5 − …). Сумма ряда с переставленными членами равна половине сумм исходного ряда![77]
Ряд из выражения (9.4) — не единственный, обладающий таким настораживающим свойством. Сходящиеся ряды разбиваются на две категории: те, у которых есть такое свойство, и те, у которых его нет. Ряды, подобные рассмотренному, сумма которых зависит от порядка суммирования, называются «условно сходящимися». Ряды, ведущие себя получше и сходящиеся к одному и тому же пределу независимо от того, как переставлены слагаемые, называются «абсолютно сходящимися». Большая часть важных в анализе рядов сходятся абсолютно. Тем не менее для нас первоочередной интерес будет представлять еще один ряд, сходящийся лишь условно, подобно ряду из выражения (9.4). Мы встретимся с ним в главе 21.
Глава 10. Доказательство и поворотная точка
Работа 1859 года «О числе простых чисел, не превышающих данной величины» была единственной публикацией Бернхарда Римана по теории чисел, а также единственной из всех написанных им работ, которая вовсе не содержала никаких геометрических идей.
Эта блестящая и основополагающая статья была, однако, неудовлетворительна в некоторых отношениях. Прежде всего, имелась сама великая Гипотеза, которую Риман оставил висеть в воздухе (где она пребывает и поныне). Его собственные слова после формулировки утверждения, эквивалентного Гипотезе, были такими:
Хотелось бы, конечно, иметь строгое доказательство этого факта, но после нескольких недолгих бесплодных попыток (einigen flüchtigen vergeblichen Versuchen) я отложил поиск такого доказательства, поскольку этого не требуется для непосредственных целей моего исследования.
Вполне разумно. Поскольку Гипотеза не имела решающего значения для развиваемых им идей, Риман оставил ее без доказательства. Но это был наименьший из недостатков той статьи. Некоторые другие вещи в ней утверждаются, но их тщательного доказательства не приводится — причем это относится и к основному результату работы! (Сам этот результат мы рассмотрим в одной из последующих глав.)
Бернхард Риман являл собой весьма чистый случай интуитивного математика. Это требует пояснений. Личность математика состоит из двух главных компонент: логической и интуитивной. Обе присутствуют в каждом хорошем математике, но при этом или одна, или другая значительно преобладает. Типичным примером исключительно логического математика является немецкий аналитик Карл Вейерштрасс (1815-1897), создавший свои великие работы в третьей четверти XIX века. Чтение работ Вейерштрасса подобно наблюдению за скалолазом. Каждый шаг, прежде чем будет предпринят последующий, твердо закрепляется доказательством. Пуанкаре говорил, что ни одна из вейерштрассовых книг не содержит ни одного рисунка. На этот счет на самом деле имеется одно исключение, но так или иначе логически выверенное построение работ Вейерштрасса весьма характерно именно для логического математика: каждый тщательно обоснован перед тем, как осуществляется переход к следующему, и при этом не делается никаких воззваний к геометрической интуиции.
Хотя в природе всегда существовали объекты с неравномерной и даже хаотичной структурой, ученые долгое время не могли описать их строение математическим языком. Понятие фракталов появилось несколько десятков лет назад. Именно тогда стало ясно, что облака, деревья, молнии, сталактиты и даже павлиний хвост можно структурировать с помощью фрактальной геометрии. Более того, мы сами в состоянии создавать фракталы! В результате последовательного возведения числа в квадрат появляется удивительное по красоте и сложности изображение, которое содержит в себе новый мир…
«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре) Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!
Таблицу умножения перестроена, сделана новая картинка. Объём материала для запоминания сокращён примерно в 5 раз. Можно использовать самую сильную – зрительную память (в прежних картинках таблицы это невозможно). Ученики запоминали таблицу за один – полтора месяца. В ней всего 36 "домиков". Умножение и деление учаться одновременно. Книга обращена к детям, объяснение простое и понятное. Метод позволяет намного облегчить деление с остатком и сокращение дробей. Метод признан Министерством Просвещения России как полезная инновация (Муниципальное образование, инновации и эксперимент 2013/1)
Для этой книги Алекс Беллос собрал 125 головоломок, созданных за прошедших два тысячелетия, вместе с историями об их происхождении и влиянии. Он выбрал самые захватывающие, увлекательные и стимулирующие работу мысли задачи. Эти головоломки можно считать математическими только в самом широком смысле: их решение требует логического мышления, но не требует глубоких знаний математики. Все эти задачи происходят из Китая, средневековой Европы, викторианской Англии и современной Японии, а также из других времен и мест. Это книга для тех, кто интересуется математикой и логикой и любит разгадывать головоломки. На русском языке публикуется впервые.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Тим Глинн-Джонс — автор этой необычной книги — знает о цифрах все. Вы убедитесь в этом, прочитав его занимательные истории «от нуля до бесконечности». С их помощью вы перестанете опасаться числа 13, разберетесь, какую страшную тайну хранит в себе число 666, узнаете, чем отличается американский миллиард от европейского и почему такие понятия как Время, Вселенная и Смерть, можно определить только через бесконечность.